# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ Function: test network Usage: python test_network_main.py --net lenet --target Ascend """ import os import time import numpy as np import argparse import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.nn import TrainOneStepCell, WithLossCell from mindspore.nn.optim import Momentum from models.lenet import LeNet from models.resnetv1_5 import resnet50 from models.alexnet import AlexNet context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") def train(net, data, label): learning_rate = 0.01 momentum = 0.9 optimizer = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), learning_rate, momentum) criterion = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True) net_with_criterion = WithLossCell(net, criterion) train_network = TrainOneStepCell(net_with_criterion, optimizer) # optimizer train_network.set_train() res = train_network(data, label) print(res) assert res def test_resnet50(): data = Tensor(np.ones([32, 3, 224, 224]).astype(np.float32) * 0.01) label = Tensor(np.ones([32]).astype(np.int32)) net = resnet50(32, 10) train(net, data, label) def test_lenet(): data = Tensor(np.ones([32, 1, 32, 32]).astype(np.float32) * 0.01) label = Tensor(np.ones([32]).astype(np.int32)) net = LeNet() train(net, data, label) def test_alexnet(): data = Tensor(np.ones([32, 3, 227, 227]).astype(np.float32) * 0.01) label = Tensor(np.ones([32]).astype(np.int32)) net = AlexNet() train(net, data, label) parser = argparse.ArgumentParser(description='MindSpore Testing Network') parser.add_argument('--net', default='resnet50', type=str, help='net name') parser.add_argument('--device', default='Ascend', type=str, help='device target') if __name__ == "__main__": args = parser.parse_args() context.set_context(device_target=args.device) if args.net == 'resnet50': test_resnet50() elif args.net == 'lenet': test_lenet() elif args.net == 'alexnet': test_alexnet() else: print("Please add net name like --net lenet")