# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # =========================================================================== """DSCNN train.""" import os import datetime import argparse import numpy as np from mindspore import context from mindspore import Tensor, Model from mindspore.nn.optim import Momentum from mindspore.common import dtype as mstype from mindspore.train.serialization import load_checkpoint from src.config import train_config from src.log import get_logger from src.dataset import audio_dataset from src.ds_cnn import DSCNN from src.loss import CrossEntropy from src.lr_scheduler import MultiStepLR, CosineAnnealingLR from src.callback import ProgressMonitor, callback_func def get_top5_acc(top5_arg, gt_class): sub_count = 0 for top5, gt in zip(top5_arg, gt_class): if gt in top5: sub_count += 1 return sub_count def val(args, model, val_dataset): '''Eval.''' val_dataloader = val_dataset.create_tuple_iterator() img_tot = 0 top1_correct = 0 top5_correct = 0 for data, gt_classes in val_dataloader: output = model.predict(Tensor(data, mstype.float32)) output = output.asnumpy() top1_output = np.argmax(output, (-1)) top5_output = np.argsort(output)[:, -5:] gt_classes = gt_classes.asnumpy() t1_correct = np.equal(top1_output, gt_classes).sum() top1_correct += t1_correct top5_correct += get_top5_acc(top5_output, gt_classes) img_tot += output.shape[0] results = [[top1_correct], [top5_correct], [img_tot]] results = np.array(results) top1_correct = results[0, 0] top5_correct = results[1, 0] img_tot = results[2, 0] acc1 = 100.0 * top1_correct / img_tot acc5 = 100.0 * top5_correct / img_tot if acc1 > args.best_acc: args.best_acc = acc1 args.best_epoch = args.epoch_cnt - 1 args.logger.info('Eval: top1_cor:{}, top5_cor:{}, tot:{}, acc@1={:.2f}%, acc@5={:.2f}%' \ .format(top1_correct, top5_correct, img_tot, acc1, acc5)) def trainval(args, model, train_dataset, val_dataset, cb): callbacks = callback_func(args, cb, 'epoch{}'.format(args.epoch_cnt)) model.train(args.val_interval, train_dataset, callbacks=callbacks, dataset_sink_mode=args.dataset_sink_mode) val(args, model, val_dataset) def train(): '''Train.''' parser = argparse.ArgumentParser() parser.add_argument('--device_id', type=int, default=1, help='which device the model will be trained on') args, model_settings = train_config(parser) context.set_context(mode=context.GRAPH_MODE, device_id=args.device_id, enable_auto_mixed_precision=True) args.rank_save_ckpt_flag = 1 # Logger args.outputs_dir = os.path.join(args.ckpt_path, datetime.datetime.now().strftime('%Y-%m-%d_time_%H_%M_%S')) args.logger = get_logger(args.outputs_dir) # Dataloader: train, val train_dataset = audio_dataset(args.feat_dir, 'training', model_settings['spectrogram_length'], model_settings['dct_coefficient_count'], args.per_batch_size) args.steps_per_epoch = train_dataset.get_dataset_size() val_dataset = audio_dataset(args.feat_dir, 'validation', model_settings['spectrogram_length'], model_settings['dct_coefficient_count'], args.per_batch_size) # show args args.logger.save_args(args) # Network args.logger.important_info('start create network') network = DSCNN(model_settings, args.model_size_info) # Load pretrain model if os.path.isfile(args.pretrained): load_checkpoint(args.pretrained, network) args.logger.info('load model {} success'.format(args.pretrained)) # Loss criterion = CrossEntropy(num_classes=model_settings['label_count']) # LR scheduler if args.lr_scheduler == 'multistep': lr_scheduler = MultiStepLR(args.lr, args.lr_epochs, args.lr_gamma, args.steps_per_epoch, args.max_epoch, warmup_epochs=args.warmup_epochs) elif args.lr_scheduler == 'cosine_annealing': lr_scheduler = CosineAnnealingLR(args.lr, args.T_max, args.steps_per_epoch, args.max_epoch, warmup_epochs=args.warmup_epochs, eta_min=args.eta_min) else: raise NotImplementedError(args.lr_scheduler) lr_schedule = lr_scheduler.get_lr() # Optimizer opt = Momentum(params=network.trainable_params(), learning_rate=Tensor(lr_schedule), momentum=args.momentum, weight_decay=args.weight_decay) model = Model(network, loss_fn=criterion, optimizer=opt, amp_level='O0') # Training args.epoch_cnt = 0 args.best_epoch = 0 args.best_acc = 0 progress_cb = ProgressMonitor(args) while args.epoch_cnt + args.val_interval < args.max_epoch: trainval(args, model, train_dataset, val_dataset, progress_cb) rest_ep = args.max_epoch - args.epoch_cnt if rest_ep > 0: trainval(args, model, train_dataset, val_dataset, progress_cb) args.logger.info('Best epoch:{} acc:{:.2f}%'.format(args.best_epoch, args.best_acc)) if __name__ == "__main__": train()