# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ ''' Functional Cells used in Bert finetune and evaluation. ''' import mindspore.nn as nn from mindspore.common.initializer import TruncatedNormal from mindspore.ops import operations as P from mindspore.ops import functional as F from mindspore.ops import composite as C from mindspore.common.tensor import Tensor from mindspore.common.parameter import Parameter, ParameterTuple from mindspore.common import dtype as mstype from mindspore.nn.wrap.grad_reducer import DistributedGradReducer from mindspore.train.parallel_utils import ParallelMode from mindspore.communication.management import get_group_size from mindspore import context from mindspore.model_zoo.Bert_NEZHA.bert_model import BertModel from mindspore.model_zoo.Bert_NEZHA.bert_for_pre_training import ClipGradients from CRF import CRF GRADIENT_CLIP_TYPE = 1 GRADIENT_CLIP_VALUE = 1.0 grad_scale = C.MultitypeFuncGraph("grad_scale") reciprocal = P.Reciprocal() @grad_scale.register("Tensor", "Tensor") def tensor_grad_scale(scale, grad): return grad * reciprocal(scale) class BertFinetuneCell(nn.Cell): """ Especifically defined for finetuning where only four inputs tensor are needed. """ def __init__(self, network, optimizer, scale_update_cell=None): super(BertFinetuneCell, self).__init__(auto_prefix=False) self.network = network self.weights = ParameterTuple(network.trainable_params()) self.optimizer = optimizer self.grad = C.GradOperation('grad', get_by_list=True, sens_param=True) self.reducer_flag = False self.allreduce = P.AllReduce() self.parallel_mode = context.get_auto_parallel_context("parallel_mode") if self.parallel_mode in [ParallelMode.DATA_PARALLEL, ParallelMode.HYBRID_PARALLEL]: self.reducer_flag = True self.grad_reducer = None if self.reducer_flag: mean = context.get_auto_parallel_context("mirror_mean") degree = get_group_size() self.grad_reducer = DistributedGradReducer(optimizer.parameters, mean, degree) self.is_distributed = (self.parallel_mode != ParallelMode.STAND_ALONE) self.clip_gradients = ClipGradients() self.cast = P.Cast() self.alloc_status = P.NPUAllocFloatStatus() self.get_status = P.NPUGetFloatStatus() self.clear_before_grad = P.NPUClearFloatStatus() self.reduce_sum = P.ReduceSum(keep_dims=False) self.depend_parameter_use = P.ControlDepend(depend_mode=1) self.base = Tensor(1, mstype.float32) self.less_equal = P.LessEqual() self.hyper_map = C.HyperMap() self.loss_scale = None self.loss_scaling_manager = scale_update_cell if scale_update_cell: self.loss_scale = Parameter(Tensor(scale_update_cell.get_loss_scale(), dtype=mstype.float32), name="loss_scale") def construct(self, input_ids, input_mask, token_type_id, label_ids, sens=None): weights = self.weights init = self.alloc_status() loss = self.network(input_ids, input_mask, token_type_id, label_ids) if sens is None: scaling_sens = self.loss_scale else: scaling_sens = sens grads = self.grad(self.network, weights)(input_ids, input_mask, token_type_id, label_ids, self.cast(scaling_sens, mstype.float32)) clear_before_grad = self.clear_before_grad(init) F.control_depend(loss, init) self.depend_parameter_use(clear_before_grad, scaling_sens) grads = self.hyper_map(F.partial(grad_scale, scaling_sens), grads) grads = self.clip_gradients(grads, GRADIENT_CLIP_TYPE, GRADIENT_CLIP_VALUE) if self.reducer_flag: grads = self.grad_reducer(grads) flag = self.get_status(init) flag_sum = self.reduce_sum(init, (0,)) if self.is_distributed: flag_reduce = self.allreduce(flag_sum) cond = self.less_equal(self.base, flag_reduce) else: cond = self.less_equal(self.base, flag_sum) F.control_depend(grads, flag) F.control_depend(flag, flag_sum) overflow = cond if sens is None: overflow = self.loss_scaling_manager(self.loss_scale, cond) if overflow: succ = False else: succ = self.optimizer(grads) ret = (loss, cond) return F.depend(ret, succ) class BertCLSModel(nn.Cell): """ This class is responsible for classification task evaluation, i.e. XNLI(num_labels=3), LCQMC(num_labels=2), Chnsenti(num_labels=2). The returned output represents the final logits as the results of log_softmax is propotional to that of softmax. """ def __init__(self, config, is_training, num_labels=2, dropout_prob=0.0, use_one_hot_embeddings=False): super(BertCLSModel, self).__init__() self.bert = BertModel(config, is_training, use_one_hot_embeddings) self.cast = P.Cast() self.weight_init = TruncatedNormal(config.initializer_range) self.log_softmax = P.LogSoftmax(axis=-1) self.dtype = config.dtype self.num_labels = num_labels self.dense_1 = nn.Dense(config.hidden_size, self.num_labels, weight_init=self.weight_init, has_bias=True).to_float(config.compute_type) self.dropout = nn.Dropout(1 - dropout_prob) def construct(self, input_ids, input_mask, token_type_id): _, pooled_output, _ = \ self.bert(input_ids, token_type_id, input_mask) cls = self.cast(pooled_output, self.dtype) cls = self.dropout(cls) logits = self.dense_1(cls) logits = self.cast(logits, self.dtype) log_probs = self.log_softmax(logits) return log_probs class BertNERModel(nn.Cell): """ This class is responsible for sequence labeling task evaluation, i.e. NER(num_labels=11). The returned output represents the final logits as the results of log_softmax is propotional to that of softmax. """ def __init__(self, config, is_training, num_labels=11, use_crf=False, dropout_prob=0.0, use_one_hot_embeddings=False): super(BertNERModel, self).__init__() self.bert = BertModel(config, is_training, use_one_hot_embeddings) self.cast = P.Cast() self.weight_init = TruncatedNormal(config.initializer_range) self.log_softmax = P.LogSoftmax(axis=-1) self.dtype = config.dtype self.num_labels = num_labels self.dense_1 = nn.Dense(config.hidden_size, self.num_labels, weight_init=self.weight_init, has_bias=True).to_float(config.compute_type) self.dropout = nn.Dropout(1 - dropout_prob) self.reshape = P.Reshape() self.shape = (-1, config.hidden_size) self.use_crf = use_crf self.origin_shape = (config.batch_size, config.seq_length, self.num_labels) def construct(self, input_ids, input_mask, token_type_id): sequence_output, _, _ = \ self.bert(input_ids, token_type_id, input_mask) seq = self.dropout(sequence_output) seq = self.reshape(seq, self.shape) logits = self.dense_1(seq) logits = self.cast(logits, self.dtype) if self.use_crf: return_value = self.reshape(logits, self.origin_shape) else: return_value = self.log_softmax(logits) return return_value class CrossEntropyCalculation(nn.Cell): """ Cross Entropy loss """ def __init__(self, is_training=True): super(CrossEntropyCalculation, self).__init__() self.onehot = P.OneHot() self.on_value = Tensor(1.0, mstype.float32) self.off_value = Tensor(0.0, mstype.float32) self.reduce_sum = P.ReduceSum() self.reduce_mean = P.ReduceMean() self.reshape = P.Reshape() self.last_idx = (-1,) self.neg = P.Neg() self.cast = P.Cast() self.is_training = is_training def construct(self, logits, label_ids, num_labels): if self.is_training: label_ids = self.reshape(label_ids, self.last_idx) one_hot_labels = self.onehot(label_ids, num_labels, self.on_value, self.off_value) per_example_loss = self.neg(self.reduce_sum(one_hot_labels * logits, self.last_idx)) loss = self.reduce_mean(per_example_loss, self.last_idx) return_value = self.cast(loss, mstype.float32) else: return_value = logits * 1.0 return return_value class BertCLS(nn.Cell): """ Train interface for classification finetuning task. """ def __init__(self, config, is_training, num_labels=2, dropout_prob=0.0, use_one_hot_embeddings=False): super(BertCLS, self).__init__() self.bert = BertCLSModel(config, is_training, num_labels, dropout_prob, use_one_hot_embeddings) self.loss = CrossEntropyCalculation(is_training) self.num_labels = num_labels def construct(self, input_ids, input_mask, token_type_id, label_ids): log_probs = self.bert(input_ids, input_mask, token_type_id) loss = self.loss(log_probs, label_ids, self.num_labels) return loss class BertNER(nn.Cell): """ Train interface for sequence labeling finetuning task. """ def __init__(self, config, is_training, num_labels=11, use_crf=False, tag_to_index=None, dropout_prob=0.0, use_one_hot_embeddings=False): super(BertNER, self).__init__() self.bert = BertNERModel(config, is_training, num_labels, use_crf, dropout_prob, use_one_hot_embeddings) if use_crf: if not tag_to_index: raise Exception("The dict for tag-index mapping should be provided for CRF.") self.loss = CRF(tag_to_index, config.batch_size, config.seq_length, is_training) else: self.loss = CrossEntropyCalculation(is_training) self.num_labels = num_labels self.use_crf = use_crf def construct(self, input_ids, input_mask, token_type_id, label_ids): logits = self.bert(input_ids, input_mask, token_type_id) if self.use_crf: loss = self.loss(logits, label_ids) else: loss = self.loss(logits, label_ids, self.num_labels) return loss