# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import mindspore.context as context import mindspore.nn as nn from mindspore.common.initializer import initializer from mindspore.common.parameter import Parameter from mindspore.ops import operations as P context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") class Net(nn.Cell): def __init__(self): super(Net, self).__init__() self.apply_momentum = P.ApplyMomentum(gradient_scale=1024.0) self.variable = Parameter(initializer( 'normal', [2, 3, 3, 4]), name='variable') self.accumulation = Parameter(initializer( 'normal', [2, 3, 3, 4]), name='accumulation') self.learning_rate = Parameter(initializer( 'normal', [1,]), name='learning_rate') self.gradient = Parameter(initializer( 'normal', [2, 3, 3, 4]), name='gradient') self.momentum = Parameter(initializer( 'normal', [1,]), name='momentum') def construct(self): return self.apply_momentum(self.variable, self.accumulation, self.learning_rate, self.gradient, self.momentum) def test_net(): apply_momentum = Net() output = apply_momentum() print(output.asnumpy())