# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0(the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http: // www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # == == == == == == == == == == == == == == == == == == == == == == == == == == == == == == == == == == == == == == import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.common.api import ms_function from mindspore.common.initializer import initializer from mindspore.common.parameter import Parameter from mindspore.ops import operations as P x = np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(np.float32) y = np.random.uniform(-2, 2, (1, 1, 1, 1)).astype(np.float32) context.set_context(device_target='CPU') class Net(nn.Cell): def __init__(self): super(Net, self).__init__() self.mul = P.Mul() self.x = Parameter(initializer(Tensor(x), x.shape), name='x3') self.y = Parameter(initializer(Tensor(y), y.shape), name='y3') @ms_function def construct(self): return self.mul(self.x, self.y) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_Mul(): mul = Net() output = mul() print(x) print(y) print(output)