# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ test bert cell """ import numpy as np import pytest from mindspore.model_zoo.Bert_NEZHA import BertConfig, BertModel from ....dataset_mock import MindData def map_bert(record): target_data = {'input_ids': None, 'input_mask': None, 'segment_ids': None, 'next_sentence_labels': None, 'masked_lm_positions': None, 'masked_lm_ids': None, 'masked_lm_weights': None} sample = dt.parse_single_example(record, target_data) return sample['input_ids'], sample['input_mask'], sample['segment_ids'], \ sample['next_sentence_labels'], sample['masked_lm_positions'], \ sample['masked_lm_ids'], sample['masked_lm_weights'] def test_bert_model(): # test for config.hidden_size % config.num_attention_heads != 0 config_error = BertConfig(32, hidden_size=512, num_attention_heads=10) with pytest.raises(ValueError): BertModel(config_error, True) def get_dataset(batch_size=1): dataset_types = (np.int32, np.int32, np.int32, np.int32, np.int32, np.int32, np.int32) dataset_shapes = ((batch_size, 128), (batch_size, 128), (batch_size, 128), (batch_size, 1), (batch_size, 20), (batch_size, 20), (batch_size, 20)) dataset = MindData(size=2, batch_size=batch_size, np_types=dataset_types, output_shapes=dataset_shapes, input_indexs=(0, 1)) return dataset