# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ Function: test network Usage: python test_predict_save_model.py --path ./ """ import argparse import os import numpy as np import mindspore.context as context import mindspore.nn as nn import mindspore.ops.operations as P from mindspore.common.tensor import Tensor from mindspore.train.serialization import export, load_checkpoint, load_param_into_net class LeNet(nn.Cell): def __init__(self): super(LeNet, self).__init__() self.relu = P.ReLU() self.batch_size = 32 self.conv1 = nn.Conv2d(1, 6, kernel_size=5, stride=1, padding=0, has_bias=False, pad_mode='valid') self.conv2 = nn.Conv2d(6, 16, kernel_size=5, stride=1, padding=0, has_bias=False, pad_mode='valid') self.pool = nn.MaxPool2d(kernel_size=2, stride=2) self.reshape = P.Reshape() self.fc1 = nn.Dense(400, 120) self.fc2 = nn.Dense(120, 84) self.fc3 = nn.Dense(84, 10) def construct(self, input_x): output = self.conv1(input_x) output = self.relu(output) output = self.pool(output) output = self.conv2(output) output = self.relu(output) output = self.pool(output) output = self.reshape(output, (self.batch_size, -1)) output = self.fc1(output) output = self.relu(output) output = self.fc2(output) output = self.relu(output) output = self.fc3(output) return output parser = argparse.ArgumentParser(description='MindSpore Model Save') parser.add_argument('--path', default='./lenet_model.ms', type=str, help='model save path') if __name__ == '__main__': context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") print("test lenet predict start") seed = 0 np.random.seed(seed) batch = 1 channel = 1 input_h = 32 input_w = 32 origin_data = np.random.uniform(low=0, high=255, size=(batch, channel, input_h, input_w)).astype(np.float32) origin_data.tofile("lenet_input_data.bin") input_data = Tensor(origin_data) print(input_data.asnumpy()) net = LeNet() ckpt_file_path = "./tests/ut/python/predict/checkpoint_lenet.ckpt" predict_args = parser.parse_args() model_path_name = predict_args.path is_ckpt_exist = os.path.exists(ckpt_file_path) if is_ckpt_exist: param_dict = load_checkpoint(ckpoint_file_name=ckpt_file_path) load_param_into_net(net, param_dict) export(net, input_data, file_name=model_path_name, file_format='LITE') print("test lenet predict success.") else: print("checkpoint file is not exist.")