# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ tests for quant """ import numpy as np from mobilenetv2_combined import MobileNetV2 import mindspore.context as context from mindspore import Tensor from mindspore import nn from mindspore.nn.layer import combined from mindspore.train.quant import quant as qat context.set_context(mode=context.GRAPH_MODE) class LeNet5(nn.Cell): """ Lenet network Args: num_class (int): Num classes. Default: 10. Returns: Tensor, output tensor Examples: >>> LeNet(num_class=10) """ def __init__(self, num_class=10): super(LeNet5, self).__init__() self.num_class = num_class self.conv1 = combined.Conv2d( 1, 6, kernel_size=5, batchnorm=True, activation='relu6') self.conv2 = combined.Conv2d(6, 16, kernel_size=5, activation='relu') self.fc1 = combined.Dense(16 * 5 * 5, 120, activation='relu') self.fc2 = combined.Dense(120, 84, activation='relu') self.fc3 = combined.Dense(84, self.num_class) self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2) self.flattern = nn.Flatten() def construct(self, x): x = self.conv1(x) x = self.bn(x) x = self.relu(x) x = self.max_pool2d(x) x = self.conv2(x) x = self.max_pool2d(x) x = self.flattern(x) x = self.fc1(x) x = self.fc2(x) x = self.fc3(x) return x def test_qat_lenet(): net = LeNet5() net = qat.convert_quant_network( net, quant_delay=0, bn_fold=False, freeze_bn=10000, weight_bits=8, act_bits=8) def test_qat_mobile(): net = MobileNetV2() img = Tensor(np.ones((1, 3, 224, 224)).astype(np.float32)) net = qat.convert_quant_network( net, quant_delay=0, bn_fold=False, freeze_bn=10000, weight_bits=8, act_bits=8) net(img) def test_qat_mobile_train(): net = MobileNetV2(num_class=10) img = Tensor(np.ones((1, 3, 224, 224)).astype(np.float32)) label = Tensor(np.ones((1, 10)).astype(np.float32)) net = qat.convert_quant_network( net, quant_delay=0, bn_fold=False, freeze_bn=10000, weight_bits=8, act_bits=8) loss = nn.SoftmaxCrossEntropyWithLogits(reduction='mean') optimizer = nn.Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9) net = nn.WithLossCell(net, loss) net = nn.TrainOneStepCell(net, optimizer) net(img, label)