# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.ops import operations as P context.set_context(mode=context.GRAPH_MODE, device_target="CPU") class Net(nn.Cell): def __init__(self): super(Net, self).__init__() self.tile = P.Tile() def construct(self, x): return self.tile(x, (1, 4)) arr_x = np.array([[0], [1], [2], [3]]).astype(np.int32) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_net(): tile = Net() print(arr_x) output = tile(Tensor(arr_x)) print(output.asnumpy()) arr_x = np.array([[0], [1], [2], [3]]).astype(np.float64) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_net_float64(): tile = Net() print(arr_x) output = tile(Tensor(arr_x)) print(output.asnumpy()) arr_x = np.array([[0], [1], [2], [3]]).astype(np.bool_) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_net_bool(): tile = Net() print(arr_x) output = tile(Tensor(arr_x)) print(output.asnumpy())