# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest from cus_square import CusSquare import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.ops import composite as C context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") grad_with_sens = C.GradOperation(sens_param=True) class Net(nn.Cell): """Net definition""" def __init__(self): super(Net, self).__init__() self.square = CusSquare() def construct(self, data): return self.square(data) @pytest.mark.level0 @pytest.mark.platform_x86_ascend_training @pytest.mark.platform_arm_ascend_training @pytest.mark.env_onecard def test_net(): x = np.array([1.0, 4.0, 9.0]).astype(np.float32) square = Net() output = square(Tensor(x)) expect = np.array([1.0, 16.0, 81.0]).astype(np.float32) assert (output.asnumpy() == expect).all() @pytest.mark.level0 @pytest.mark.platform_x86_ascend_training @pytest.mark.platform_arm_ascend_training @pytest.mark.env_onecard def test_grad_net(): x = np.array([1.0, 4.0, 9.0]).astype(np.float32) sens = np.array([1.0, 1.0, 1.0]).astype(np.float32) square = Net() dx = grad_with_sens(square)(Tensor(x), Tensor(sens)) expect = np.array([2.0, 8.0, 18.0]).astype(np.float32) assert (dx.asnumpy() == expect).all()