/** * Copyright 2019 Huawei Technologies Co., Ltd * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include "common/common_test.h" #include "frontend/parallel/strategy.h" #include "frontend/parallel/ops_info/transpose_info.h" #include "frontend/parallel/device_manager.h" #include "frontend/parallel/step_parallel.h" namespace mindspore { namespace parallel { class TransposeInfo; using TransposeInfoPtr = std::shared_ptr; TransposeInfoPtr transpose; class TestTransposeInfo : public UT::Common { public: TestTransposeInfo() {} void SetUp(); void TearDown() {} }; void TestTransposeInfo::SetUp() { RankList dev_list; for (int32_t i = 0; i < 34; i++) { dev_list.push_back(i); } RankList stage_map; stage_map.push_back(32); stage_map.push_back(2); int32_t local_dev = 0; // create a new g_device_manager g_device_manager = std::make_shared(); g_device_manager->Init(dev_list, local_dev, stage_map, "hccl"); std::unordered_map attr; Shapes inputs_shape = {{128, 64}}; Shapes outputs_shape = {{64, 128}}; std::vector axis = {1, 0}; ValuePtr val0; ValuePtr val1 = MakeValue(axis); std::vector val = {val0, val1}; transpose = std::make_shared("transpose_info", inputs_shape, outputs_shape, attr); transpose->set_input_value(val); } TEST_F(TestTransposeInfo, InferDevMatrixShape1) { Strategys inputs = {{4, 8}}; StrategyPtr strategy = NewStrategy(0, inputs); transpose->Init(strategy); Shape dev_matrix_shape = transpose->dev_matrix_shape(); Shape expect = {4, 8}; ASSERT_EQ(dev_matrix_shape, expect); } TEST_F(TestTransposeInfo, InferDevMatrixShape2) { Strategys inputs = {{4, 1}}; StrategyPtr strategy = NewStrategy(0, inputs); transpose->Init(strategy); Shape dev_matrix_shape = transpose->dev_matrix_shape(); Shape expect = {4, 1, 8}; ASSERT_EQ(dev_matrix_shape, expect); } TEST_F(TestTransposeInfo, InferSliceShape1) { Strategys str = {{4, 8}}; StrategyPtr strategy = NewStrategy(0, str); transpose->Init(strategy); std::vector inputs = transpose->inputs_tensor_info(); std::vector outputs = transpose->outputs_tensor_info(); Shape input_slice_shape_expect = {32, 8}; Shape output_slice_shape_expect = {8, 32}; TensorInfo input_tensor_info = inputs.at(0); TensorInfo output_tensor_info = outputs.at(0); Shape input_slice_shape = input_tensor_info.slice_shape(); Shape output_slice_shape = output_tensor_info.slice_shape(); ASSERT_EQ(input_slice_shape, input_slice_shape_expect); ASSERT_EQ(output_slice_shape, output_slice_shape_expect); } TEST_F(TestTransposeInfo, GetTensorLayout1) { Strategys str = {{4, 8}}; StrategyPtr strategy = NewStrategy(0, str); transpose->Init(strategy); std::vector inputs = transpose->inputs_tensor_info(); std::vector outputs = transpose->outputs_tensor_info(); TensorMap input_expect = {1, 0}; TensorMap output_expect = {0, 1}; TensorInfo input_tensor_info = inputs.at(0); TensorInfo output_tensor_info = outputs.at(0); Map input_tensor_map = input_tensor_info.tensor_layout().origin_tensor_map(); Map output_tensor_map = output_tensor_info.tensor_layout().origin_tensor_map(); ASSERT_EQ(input_tensor_map.array(), input_expect); ASSERT_EQ(output_tensor_map.array(), output_expect); } TEST_F(TestTransposeInfo, GetForwardOp1) { Strategys inputs = {{4, 8}}; StrategyPtr strategy = NewStrategy(0, inputs); transpose->Init(strategy); OperatorVector forward_op = transpose->forward_op(); size_t size = forward_op.size(); ASSERT_EQ(size, 0); } TEST_F(TestTransposeInfo, GetMirrorOPs1) { Strategys inputs = {{4, 8}}; StrategyPtr strategy = NewStrategy(0, inputs); transpose->Init(strategy); MirrorOps mirror_ops = transpose->mirror_ops(); size_t size = mirror_ops.size(); ASSERT_EQ(size, 0); } TEST_F(TestTransposeInfo, CheckStrategy1) { Strategys inputs = {{1, 4, 8}}; StrategyPtr strategy = NewStrategy(0, inputs); Status ret = transpose->Init(strategy); ASSERT_EQ(ret, FAILED); } TEST_F(TestTransposeInfo, CheckStrategy2) { Strategys inputs = {{2, 4, 8}, {2, 4, 8}}; StrategyPtr strategy = NewStrategy(0, inputs); Status ret = transpose->Init(strategy); ASSERT_EQ(ret, FAILED); } TEST_F(TestTransposeInfo, CheckStrategy3) { Strategys inputs = {{4, 8}}; StrategyPtr strategy = NewStrategy(0, inputs); Status ret = transpose->Init(strategy); ASSERT_EQ(ret, SUCCESS); } TEST_F(TestTransposeInfo, AutoStrategy1) { ASSERT_EQ(transpose->GenerateStrategies(0), Status::SUCCESS); std::vector> sc = transpose->GetStrategyCost(); Shapes splittable_inputs = {{1, 1}}; std::vector sp_vector; Shapes inputs_shape = {{128, 64}}; GenerateStrategiesForIndependentInputs(0, inputs_shape, splittable_inputs, &sp_vector); ASSERT_EQ(sc.size(), sp_vector.size()); } } // namespace parallel } // namespace mindspore