# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ resnet50 example """ import numpy as np import mindspore.nn as nn from mindspore import Tensor from mindspore.ops import operations as P from ..ut_filter import non_graph_engine def conv3x3(in_channels, out_channels, stride=1, padding=1): """3x3 convolution """ weight = Tensor(np.ones([out_channels, in_channels, 3, 3]).astype(np.float32) * 0.01) return nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=padding, weight_init=weight) def conv1x1(in_channels, out_channels, stride=1, padding=0): """1x1 convolution""" weight = Tensor(np.ones([out_channels, in_channels, 1, 1]).astype(np.float32) * 0.01) return nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, padding=padding, weight_init=weight) def bn_with_initialize(out_channels): shape = (out_channels) mean = Tensor(np.ones(shape).astype(np.float32) * 0.01) var = Tensor(np.ones(shape).astype(np.float32) * 0.01) beta = Tensor(np.ones(shape).astype(np.float32) * 0.01) gamma = Tensor(np.ones(shape).astype(np.float32) * 0.01) return nn.BatchNorm2d(num_features=out_channels, beta_init=beta, gamma_init=gamma, moving_mean_init=mean, moving_var_init=var) class ResidualBlock(nn.Cell): """ residual Block """ expansion = 4 def __init__(self, in_channels, out_channels, stride=1, down_sample=False): super(ResidualBlock, self).__init__() out_chls = out_channels // self.expansion self.conv1 = conv1x1(in_channels, out_chls, stride=stride, padding=0) self.bn1 = bn_with_initialize(out_chls) self.conv2 = conv3x3(out_chls, out_chls, stride=1, padding=1) self.bn2 = bn_with_initialize(out_chls) self.conv3 = conv1x1(out_chls, out_channels, stride=1, padding=0) self.bn3 = bn_with_initialize(out_channels) self.relu = nn.ReLU() self.downsample = down_sample self.conv_down_sample = conv1x1(in_channels, out_channels, stride=stride, padding=0) self.bn_down_sample = bn_with_initialize(out_channels) self.add = P.TensorAdd() def construct(self, x): """ :param x: :return: """ identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample: identity = self.conv_down_sample(identity) identity = self.bn_down_sample(identity) out = self.add(out, identity) out = self.relu(out) return out class MakeLayer3(nn.Cell): """ make resnet50 3 layers """ def __init__(self, block, in_channels, out_channels, stride): super(MakeLayer3, self).__init__() self.block_down_sample = block(in_channels, out_channels, stride=stride, down_sample=True) self.block1 = block(out_channels, out_channels, stride=1) self.block2 = block(out_channels, out_channels, stride=1) def construct(self, x): x = self.block_down_sample(x) x = self.block1(x) x = self.block2(x) return x class MakeLayer4(nn.Cell): """ make resnet50 4 layers """ def __init__(self, block, in_channels, out_channels, stride): super(MakeLayer4, self).__init__() self.block_down_sample = block(in_channels, out_channels, stride=stride, down_sample=True) self.block1 = block(out_channels, out_channels, stride=1) self.block2 = block(out_channels, out_channels, stride=1) self.block3 = block(out_channels, out_channels, stride=1) def construct(self, x): x = self.block_down_sample(x) x = self.block1(x) x = self.block2(x) x = self.block3(x) return x class MakeLayer6(nn.Cell): """ make resnet50 6 layers """ def __init__(self, block, in_channels, out_channels, stride): super(MakeLayer6, self).__init__() self.block_down_sample = block(in_channels, out_channels, stride=stride, down_sample=True) self.block1 = block(out_channels, out_channels, stride=1) self.block2 = block(out_channels, out_channels, stride=1) self.block3 = block(out_channels, out_channels, stride=1) self.block4 = block(out_channels, out_channels, stride=1) self.block5 = block(out_channels, out_channels, stride=1) def construct(self, x): x = self.block_down_sample(x) x = self.block1(x) x = self.block2(x) x = self.block3(x) x = self.block4(x) x = self.block5(x) return x class ResNet50(nn.Cell): """ resnet nn.Cell """ def __init__(self, block, num_classes=100): super(ResNet50, self).__init__() weight_conv = Tensor(np.ones([64, 3, 7, 7]).astype(np.float32) * 0.01) self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, weight_init=weight_conv) self.bn1 = bn_with_initialize(64) self.relu = nn.ReLU() self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = MakeLayer3( block, in_channels=64, out_channels=256, stride=1) self.layer2 = MakeLayer4( block, in_channels=256, out_channels=512, stride=2) self.layer3 = MakeLayer6( block, in_channels=512, out_channels=1024, stride=2) self.layer4 = MakeLayer3( block, in_channels=1024, out_channels=2048, stride=2) self.avgpool = nn.AvgPool2d(7, 1) self.flatten = nn.Flatten() weight_fc = Tensor(np.ones([num_classes, 512 * block.expansion]).astype(np.float32) * 0.01) bias_fc = Tensor(np.ones([num_classes]).astype(np.float32) * 0.01) self.fc = nn.Dense(512 * block.expansion, num_classes, weight_init=weight_fc, bias_init=bias_fc) def construct(self, x): """ :param x: :return: """ x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avgpool(x) x = self.flatten(x) x = self.fc(x) return x def resnet50(): return ResNet50(ResidualBlock, 10) @non_graph_engine def test_compile(): net = resnet50() input_data = Tensor(np.ones([1, 3, 224, 224]).astype(np.float32) * 0.01) output = net(input_data) print(output.asnumpy())