# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ test assign add """ import numpy as np import mindspore.nn as nn from mindspore.ops import operations as P from mindspore.common.initializer import initializer from mindspore import Tensor, Parameter import mindspore as ms from ..ut_filter import non_graph_engine from mindspore.common.api import _executor import mindspore.context as context import pytest context.set_context(mode=context.GRAPH_MODE) class Net(nn.Cell): """Net definition""" def __init__(self): super(Net, self).__init__() self.AssignAdd = P.AssignAdd() self.inputdata = Parameter(initializer(1, [1], ms.int64), name="global_step") print("inputdata: ", self.inputdata) def construct(self, x): out = self.AssignAdd(self.inputdata, x) return out @non_graph_engine def test_AssignAdd_1(): """test AssignAdd 1""" import mindspore.context as context context.set_context(mode=context.GRAPH_MODE) net = Net() x = Tensor(np.ones([1]).astype(np.int64)*100) print("MyPrintResult dataX:", x) result = net(x) print("MyPrintResult data::", result) expect = np.ones([1]).astype(np.int64)*101 diff = result.asnumpy() - expect print("MyPrintExpect:", expect) print("MyPrintDiff:", diff) error = np.ones(shape=[1]) * 1.0e-3 assert np.all(diff < error) @non_graph_engine def test_AssignAdd_2(): """test AssignAdd 2""" import mindspore.context as context context.set_context(mode=context.GRAPH_MODE) net = Net() x = Tensor(np.ones([1]).astype(np.int64)*102) print("MyPrintResult dataX:", x) result = net(x) print("MyPrintResult data::", result.asnumpy()) expect = np.ones([1]).astype(np.int64)*103 diff = result.asnumpy() - expect print("MyPrintExpect:", expect) print("MyPrintDiff:", diff) error = np.ones(shape=[1]) * 1.0e-3 assert np.all(diff < error) class AssignAddNet(nn.Cell): """Net definition""" def __init__(self): super(AssignAddNet, self).__init__() self.AssignAdd = P.AssignAdd() self.inputdata = Parameter(initializer(1, [1], ms.float16), name="KIND_AUTOCAST_SCALAR_TO_TENSOR") self.one = 1 def construct(self, ixt): z1 = self.AssignAdd(self.inputdata, self.one) return z1 @non_graph_engine def test_assignadd_scalar_cast(): net = AssignAddNet() x = Tensor(np.ones([1]).astype(np.int64)*102) #_executor.compile(net, 1) result = net(x)