# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ test model train """ import numpy as np import mindspore.nn as nn from mindspore.ops import operations as P from mindspore.common.initializer import initializer from mindspore import Tensor, Parameter, Model from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits from mindspore.nn.optim import Momentum # fn is a funcation use i as input def lr_gen(fn, epoch_size): for i in range(epoch_size): yield fn(i) def me_train_tensor(net, input_np, label_np, epoch_size=2): """me_train_tensor""" loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction="mean") opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr_gen(lambda i: 0.1, epoch_size), 0.9, 0.01, 1024) Model(net, loss, opt) _network = nn.WithLossCell(net, loss) _train_net = nn.TrainOneStepCell(_network, opt) _train_net.set_train() label_np = np.argmax(label_np, axis=-1).astype(np.int32) for epoch in range(0, epoch_size): print(f"epoch %d"%(epoch)) _train_net(Tensor(input_np), Tensor(label_np)) def test_bias_add(test_with_simu): """test_bias_add""" import mindspore.context as context is_pynative_mode = (context.get_context("mode") == context.PYNATIVE_MODE) # training api is implemented under Graph mode if is_pynative_mode: context.set_context(mode=context.GRAPH_MODE) if test_with_simu: return class Net(nn.Cell): """Net definition""" def __init__(self, output_channels, bias_init='zeros', ): super(Net, self).__init__() self.biasAdd = P.BiasAdd() if isinstance(bias_init, Tensor): if bias_init.dim() != 1 or bias_init.shape()[0] != output_channels: raise ValueError("bias_init shape error") self.bias = Parameter(initializer( bias_init, [output_channels]), name="bias") def construct(self, input_x): return self.biasAdd(input_x, self.bias) bias_init = Tensor(np.ones([3]).astype(np.float32)) input_np = np.ones([1, 3, 3, 3], np.float32) label_np = np.ones([1, 3, 3, 3], np.int32) * 2 me_train_tensor(Net(3, bias_init=bias_init), input_np, label_np) def test_conv(test_with_simu): """test_conv""" import mindspore.context as context is_pynative_mode = (context.get_context("mode") == context.PYNATIVE_MODE) # training api is implemented under Graph mode if is_pynative_mode: context.set_context(mode=context.GRAPH_MODE) if test_with_simu: return class Net(nn.Cell): "Net definition""" def __init__(self, cin, cout, kernel_size): super(Net, self).__init__() Tensor(np.ones([6, 3, 3, 3]).astype(np.float32) * 0.01) self.conv = nn.Conv2d(cin, cout, kernel_size) def construct(self, input_x): return self.conv(input_x) net = Net(3, 6, (3, 3)) input_np = np.ones([1, 3, 32, 32]).astype(np.float32) * 0.01 label_np = np.ones([1, 6, 32, 32]).astype(np.int32) me_train_tensor(net, input_np, label_np) def test_net(): """test_net""" import mindspore.context as context is_pynative_mode = (context.get_context("mode") == context.PYNATIVE_MODE) # training api is implemented under Graph mode if is_pynative_mode: context.set_context(mode=context.GRAPH_MODE) class Net(nn.Cell): """Net definition""" def __init__(self): super(Net, self).__init__() Tensor(np.ones([64, 3, 7, 7]).astype(np.float32) * 0.01) self.conv = nn.Conv2d(3, 64, (7, 7), pad_mode="same", stride=2) self.relu = nn.ReLU() self.bn = nn.BatchNorm2d(64) self.mean = P.ReduceMean(keep_dims=True) self.flatten = nn.Flatten() self.dense = nn.Dense(64, 12) def construct(self, input_x): output = input_x output = self.conv(output) output = self.bn(output) output = self.relu(output) output = self.mean(output, (-2, -1)) output = self.flatten(output) output = self.dense(output) return output net = Net() input_np = np.ones([32, 3, 224, 224]).astype(np.float32) * 0.01 label_np = np.ones([32, 12]).astype(np.int32) me_train_tensor(net, input_np, label_np) def test_bn(): """test_bn""" import mindspore.context as context is_pynative_mode = (context.get_context("mode") == context.PYNATIVE_MODE) # training api is implemented under Graph mode if is_pynative_mode: context.set_context(mode=context.GRAPH_MODE) class Net(nn.Cell): """Net definition""" def __init__(self, cin, cout): super(Net, self).__init__() self.bn = nn.BatchNorm2d(cin) self.flatten = nn.Flatten() self.dense = nn.Dense(cin, cout) def construct(self, input_x): output = input_x output = self.bn(output) output = self.flatten(output) output = self.dense(output) return output net = Net(2048, 16) input_np = np.ones([32, 2048, 1, 1]).astype(np.float32) * 0.01 label_np = np.ones([32, 16]).astype(np.int32) me_train_tensor(net, input_np, label_np)