# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """test_metric_factory""" import math import numpy as np from mindspore.nn.metrics import get_metric_fn from mindspore import Tensor def test_classification_accuracy(): x = Tensor(np.array([[0.2, 0.5], [0.3, 0.1], [0.9, 0.6]])) y = Tensor(np.array([1, 0, 1])) metric = get_metric_fn('accuracy', eval_type='classification') metric.clear() metric.update(x, y) accuracy = metric.eval() assert math.isclose(accuracy, 2/3) def test_classification_accuracy_by_alias(): x = Tensor(np.array([[0.2, 0.5], [0.3, 0.1], [0.9, 0.6]])) y = Tensor(np.array([1, 0, 1])) metric = get_metric_fn('acc', eval_type='classification') metric.clear() metric.update(x, y) accuracy = metric.eval() assert math.isclose(accuracy, 2/3) def test_classification_precision(): x = Tensor(np.array([[0.2, 0.5], [0.3, 0.1], [0.9, 0.6]])) y = Tensor(np.array([1, 0, 1])) metric = get_metric_fn('precision', eval_type='classification') metric.clear() metric.update(x, y) precision = metric.eval() assert np.equal(precision, np.array([0.5, 1])).all()