# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import pytest import numpy as np from mindspore import Tensor import mindspore.nn as nn import mindspore.context as context from mindspore.ops import composite as C from mindspore.common.initializer import initializer context.set_context(mode=context.GRAPH_MODE, device_target="CPU") class NetDot(nn.Cell): def construct(self, x, y): return C.dot(x, y) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_dot_001(): x1_tensor = Tensor(np.array([[1., 2.], [4., 5.]]).astype(np.float32)) x2_tensor = Tensor(np.array([[[1., 2.], [3., 4.]], [[5., 6.], [7., 8.]], \ [[9., 10.], [11., 12.]]]).astype(np.float32)) network = NetDot() ms_result_np = network(x1_tensor, x2_tensor) expect_result = np.array([[[7., 10.], [19., 22.], [31., 34.]], \ [[19., 28.], [55., 64.], [91., 100.]]]).astype(np.float32) assert (ms_result_np.asnumpy() == expect_result).all() @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_dot_002(): x1_tensor = Tensor(np.array([[1., 2.], [4., 5.]]).astype(np.float32)) x2_tensor = Tensor(np.array([[[1., 2., 3.], [4., 5., 6.]], [[7., 8., 9.], [10., 11., 12.]]]).astype(np.float32)) network = NetDot() ms_result_np = network(x1_tensor, x2_tensor) expect_result = np.array([[[9., 12., 15.], [27., 30., 33.]], [[24., 33., 42.], [78., 87., 96.]]]).astype(np.float32) assert (ms_result_np.asnumpy() == expect_result).all() @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_dot_003(): x1_tensor = initializer(Tensor(np.arange(2 * 3 * 4).reshape(2, 3, 4).astype(np.float32)), [2, 3, 4]) x2_tensor = initializer(Tensor(np.arange(1 * 5 * 4 * 2).reshape(1, 5, 4, 2).astype(np.float32)), [1, 5, 4, 2]) network = NetDot() ms_result_np = network(x1_tensor, x2_tensor) expect_result = np.array([[[[[28., 34.], [76., 82.], [124., 130.], [172., 178.], [220., 226.]]], [[[76., 98.], [252., 274.], [428., 450.], [604., 626.], [780., 802.]]], [[[124., 162.], [428., 466.], [732., 770.], [1036., 1074.], [1340., 1378.]]]], [[[[172., 226.], [604., 658.], [1036., 1090.], [1468., 1522.], [1900., 1954.]]], [[[220., 290.], [780., 850.], [1340., 1410.], [1900., 1970.], [2460., 2530.]]], [[[268., 354.], [956., 1042.], [1644., 1730.], [2332., 2418.], [3020., 3106.]]]]]).astype(np.float32) assert (ms_result_np.asnumpy() == expect_result).all() @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_dot_004(): x1_tensor = initializer(Tensor(np.arange(3 * 4).reshape(3, 4).astype(np.float32)), [3, 4]) x2_tensor = initializer(Tensor(np.arange(4 * 5).reshape(4, 5).astype(np.float32)), [4, 5]) network = NetDot() ms_result_np = network(x1_tensor, x2_tensor) expect_result = np.array([[70., 76., 82., 88., 94.], [190., 212., 234., 256., 278.], [310., 348., 386., 424., 462.]]).astype(np.float32) assert (ms_result_np.asnumpy() == expect_result).all() @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_dot_005(): x1_tensor = initializer(Tensor(np.arange(2 * 3 * 4).reshape(2, 3, 4).astype(np.float32)), [2, 3, 4]) x2_tensor = initializer(Tensor(np.arange(4 * 5).reshape(4, 5).astype(np.float32)), [4, 5]) network = NetDot() ms_result_np = network(x1_tensor, x2_tensor) expect_result = np.array([[[70., 76., 82., 88., 94.], [190., 212., 234., 256., 278.], [310., 348., 386., 424., 462.]], [[430., 484., 538., 592., 646.], [550., 620., 690., 760., 830.], [670., 756., 842., 928., 1014.]]]).astype(np.float32) assert (ms_result_np.asnumpy() == expect_result).all() @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_dot_006(): x1_tensor = initializer(Tensor(np.arange(4).reshape(4).astype(np.float32)), [4]) x2_tensor = initializer(Tensor(np.arange(2 * 4 * 5).reshape(2, 4, 5).astype(np.float32)), [2, 4, 5]) network = NetDot() try: network(x1_tensor, x2_tensor) except ValueError as e: assert ValueError == type(e) def test_dot_007(): x1_tensor = initializer(Tensor(np.arange(4).reshape(4).astype(np.float32)), [4]) x2_tensor = initializer(Tensor(np.arange(4 * 4).reshape(4, 4).astype(np.float32)), [4, 4]) network = NetDot() try: network(x2_tensor, x1_tensor) except ValueError as e: assert ValueError == type(e) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_dot_008(): x1_tensor = Tensor(np.array([]).astype(np.float32)) x2_tensor = Tensor(np.array([[[1., 2.], [3., 4.]], [[5., 6.], [7., 8.]], [[9., 10.], [11., 12.]]]).astype(np.float32)) network = NetDot() try: network(x2_tensor, x1_tensor) except ValueError as e: assert ValueError == type(e) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_dot_009(): # for document input_x1 = Tensor(np.array(np.ones(shape=[2, 3])).astype(np.float32)) input_x2 = Tensor(np.array(np.ones(shape=[1, 2, 3])).astype(np.float32)) network = NetDot() try: network(input_x1, input_x2) except ValueError as e: assert ValueError == type(e) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_dot_010(): # for document input_x1 = Tensor(np.array(np.ones(shape=[2, 3])).astype(np.float32)) input_x2 = Tensor(np.array(np.ones(shape=[1, 3, 2])).astype(np.float32)) network = NetDot() ms_result_np = network(input_x1, input_x2) expect_result = np.array([[[3., 3.]], [[3., 3.]]]).astype(np.float32) assert (ms_result_np.asnumpy() == expect_result).all() @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_dot_011(): # for document context.set_context(mode=context.PYNATIVE_MODE, device_target="CPU") input_x1 = Tensor(np.array(np.ones(shape=[2, 3])).astype(np.float32)) input_x2 = Tensor(np.array(np.ones(shape=[1, 3, 2])).astype(np.float32)) network = NetDot() ms_result_np = network(input_x1, input_x2) expect_result = np.array([[[3., 3.]], [[3., 3.]]]).astype(np.float32) assert (ms_result_np.asnumpy() == expect_result).all()