# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context import mindspore.common.dtype as mstype import mindspore.nn as nn from mindspore import Tensor from mindspore.ops import operations as P context.set_context(mode=context.GRAPH_MODE, device_target='CPU') class Net(nn.Cell): def __init__(self): super(Net, self).__init__() self.ops = P.SquaredDifference() def construct(self, x, y): return self.ops(x, y) @pytest.mark.level0 @pytest.mark.platform_x86_cpu_training @pytest.mark.env_onecard def test_net01(): net = Net() np.random.seed(1) x1 = np.random.randn(2, 3).astype(np.int32) y1 = np.random.randn(2, 3).astype(np.int32) output1 = net(Tensor(x1), Tensor(y1)).asnumpy() diff = x1 - y1 expect1 = diff * diff assert np.all(expect1 == output1) assert output1.shape == expect1.shape x2 = np.random.randn(2, 3).astype(np.float32) y2 = np.random.randn(2, 3).astype(np.float32) output2 = net(Tensor(x2), Tensor(y2)).asnumpy() diff = x2 - y2 expect2 = diff * diff assert np.all(expect2 == output2) assert output2.shape == expect2.shape x3 = np.random.randn(2, 3).astype(np.bool) y3 = np.random.randn(2, 3).astype(np.bool) try: net(Tensor(x3), Tensor(y3)).asnumpy() except TypeError: assert True @pytest.mark.level0 @pytest.mark.platform_x86_cpu_training @pytest.mark.env_onecard def test_net02(): net = Net() x1 = Tensor(1, mstype.float32) y1 = Tensor(np.array([[3, 3], [3, 3]]).astype(np.float32)) expect1 = np.array([[4, 4], [4, 4]]).astype(np.float32) output1 = net(x1, y1).asnumpy() assert np.all(expect1 == output1) assert output1.shape == expect1.shape np.random.seed(1) x2 = np.random.randn(2, 3).astype(np.float32) y2 = np.random.randn(2, 2, 3).astype(np.float32) output2 = net(Tensor(x2), Tensor(y2)).asnumpy() diff = x2 - y2 expect2 = diff * diff assert np.all(expect2 == output2) assert output2.shape == expect2.shape x3 = np.random.randn(1, 2).astype(np.float32) y3 = np.random.randn(3, 1).astype(np.float32) output3 = net(Tensor(x3), Tensor(y3)).asnumpy() diff = x3 - y3 expect3 = diff * diff assert np.all(expect3 == output3) assert output3.shape == expect3.shape x4 = np.random.randn(2, 3).astype(np.float32) y4 = np.random.randn(1, 2).astype(np.float32) try: net(Tensor(x4), Tensor(y4)).asnumpy() except ValueError: assert True x5 = np.random.randn(2, 3, 2, 3, 4, 5, 6, 7).astype(np.float32) y5 = np.random.randn(2, 3, 2, 3, 4, 5, 6, 7).astype(np.float32) output5 = net(Tensor(x5), Tensor(y5)).asnumpy() diff = x5 - y5 expect5 = diff * diff assert np.all(expect5 == output5) assert output5.shape == expect5.shape