# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.common.dtype as mstype import mindspore.context as context from mindspore.common.tensor import Tensor from mindspore.nn import Cell from mindspore.ops import operations as P class LinSpaceNet(Cell): def __init__(self, num): super(LinSpaceNet, self).__init__() self.ls_op = P.LinSpace() self.num = num def construct(self, start, stop): output = self.ls_op(start, stop, self.num) return output @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_lin_space_1(): context.set_context(mode=context.GRAPH_MODE, device_target='GPU') start_np = 5 stop_np = 150 num_np = 12 start = Tensor(start_np, dtype=mstype.float32) stop = Tensor(stop_np, dtype=mstype.float32) num = num_np ls_op = P.LinSpace() result_ms = ls_op(start, stop, num).asnumpy() result_np = np.linspace(start_np, stop_np, num_np) assert np.allclose(result_ms, result_np) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_lin_shape_2(): context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU') start_np = -25 stop_np = 147 num_np = 10 start = Tensor(start_np, dtype=mstype.float32) stop = Tensor(stop_np, dtype=mstype.float32) num = num_np ls_op = P.LinSpace() result_ms = ls_op(start, stop, num).asnumpy() result_np = np.linspace(start_np, stop_np, num_np) assert np.allclose(result_ms, result_np) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_lin_shape_3(): context.set_context(mode=context.GRAPH_MODE, device_target='GPU') start_np = 25 stop_np = -147 num_np = 20 start = Tensor(start_np, dtype=mstype.float32) stop = Tensor(stop_np, dtype=mstype.float32) net = LinSpaceNet(num_np) result_ms = net(start, stop).asnumpy() result_np = np.linspace(start_np, stop_np, num_np) assert np.allclose(result_ms, result_np) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_lin_shape_4(): context.set_context(mode=context.GRAPH_MODE, device_target='GPU') start_np = -25.3 stop_np = -147 num_np = 36 start = Tensor(start_np, dtype=mstype.float32) stop = Tensor(stop_np, dtype=mstype.float32) net = LinSpaceNet(num_np) result_ms = net(start, stop).asnumpy() result_np = np.linspace(start_np, stop_np, num_np) assert np.allclose(result_ms, result_np)