# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """test loss""" import numpy as np import pytest from mindspore import Tensor from mindspore.nn.metrics import Loss def test_loss_inputs_error(): loss = Loss() with pytest.raises(ValueError): loss(np.array(1), np.array(2)) def test_loss_shape_error(): loss = Loss() inp = np.ones(shape=[2, 2]) with pytest.raises(ValueError): loss.update(inp) def test_loss(): """test_loss""" num = 5 inputs = np.random.rand(num) loss = Loss() for k in range(num): loss.update(Tensor(np.array([inputs[k]]))) assert inputs.mean() == loss.eval() loss.clear() with pytest.raises(RuntimeError): loss.eval()