# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np from mindspore import context, nn, Tensor, Parameter from mindspore.common import dtype as mstype from mindspore.ops import operations as P context.set_context(mode=context.GRAPH_MODE, save_graphs=False) class Net(nn.Cell): def __init__(self, data): super(Net, self).__init__() self.start = Tensor(0, dtype=mstype.int32) self.end = Tensor(2, dtype=mstype.int32) self.max_output = Parameter(data, "output_x") self.upd = P.ScatterNdUpdate() self.zero = Tensor(np.ones([1], dtype=np.int32)) def construct(self, inputs): idx = self.start end = self.end while idx < end: xi = inputs[idx, :, :] self.upd(self.max_output, idx + self.zero, xi) idx = idx + 1 return self.max_output + 0 def test_x(): x = Tensor(np.arange(10 * 2 * 3).reshape(10, 2, 3).astype(np.float32)) net = Net(x) net(x)