# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Export Resnet50 on ImageNet""" import argparse import numpy as np import mindspore from mindspore import Tensor, context, load_checkpoint, load_param_into_net, export from mindspore.compression.quant import QuantizationAwareTraining from models.resnet_quant_manual import resnet50_quant from src.config import config_quant parser = argparse.ArgumentParser(description='Image classification') parser.add_argument('--checkpoint_path', type=str, default=None, help='Checkpoint file path') parser.add_argument('--file_format', type=str, choices=["AIR", "MINDIR"], default="MINDIR", help="file format") parser.add_argument('--device_target', type=str, default=None, help='Run device target') args_opt = parser.parse_args() if __name__ == '__main__': context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.device_target, save_graphs=False) # define fusion network network = resnet50_quant(class_num=config_quant.class_num) # convert fusion network to quantization aware network quantizer = QuantizationAwareTraining(bn_fold=True, per_channel=[True, False], symmetric=[True, False]) network = quantizer.quantize(network) # load checkpoint if args_opt.checkpoint_path: param_dict = load_checkpoint(args_opt.checkpoint_path) not_load_param = load_param_into_net(network, param_dict) if not_load_param: raise ValueError("Load param into network fail!") # export network print("============== Starting export ==============") inputs = Tensor(np.ones([1, 3, 224, 224]), mindspore.float32) export(network, inputs, file_name="resnet50_quant", file_format=args_opt.file_format, quant_mode='MANUAL', mean=0., std_dev=48.106) print("============== End export ==============")