# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Train Resnet50 on ImageNet""" import os import argparse from mindspore import context from mindspore import Tensor from mindspore.nn.optim.momentum import Momentum from mindspore.train.model import Model from mindspore.context import ParallelMode from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor from mindspore.train.loss_scale_manager import FixedLossScaleManager from mindspore.train.serialization import load_checkpoint from mindspore.compression.quant import QuantizationAwareTraining from mindspore.compression.quant.quant_utils import load_nonquant_param_into_quant_net from mindspore.communication.management import init import mindspore.nn as nn import mindspore.common.initializer as weight_init from mindspore.common import set_seed #from models.resnet_quant import resnet50_quant #auto construct quantative network of resnet50 from models.resnet_quant_manual import resnet50_quant #manually construct quantative network of resnet50 from src.dataset import create_dataset from src.lr_generator import get_lr from src.config import config_quant from src.crossentropy import CrossEntropy set_seed(1) parser = argparse.ArgumentParser(description='Image classification') parser.add_argument('--run_distribute', type=bool, default=False, help='Run distribute') parser.add_argument('--device_num', type=int, default=1, help='Device num.') parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path') parser.add_argument('--device_target', type=str, default='Ascend', help='Device target') parser.add_argument('--pre_trained', type=str, default=None, help='Pertained checkpoint path') args_opt = parser.parse_args() config = config_quant if args_opt.device_target == "Ascend": device_id = int(os.getenv('DEVICE_ID')) rank_id = int(os.getenv('RANK_ID')) rank_size = int(os.getenv('RANK_SIZE')) run_distribute = rank_size > 1 context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=False, device_id=device_id, enable_auto_mixed_precision=True) else: raise ValueError("Unsupported device target.") if __name__ == '__main__': # train on ascend print("training args: {}".format(args_opt)) print("training configure: {}".format(config)) print("parallel args: rank_id {}, device_id {}, rank_size {}".format(rank_id, device_id, rank_size)) epoch_size = config.epoch_size # distribute init if run_distribute: context.set_auto_parallel_context(device_num=rank_size, parallel_mode=ParallelMode.DATA_PARALLEL, gradients_mean=True) init() context.set_auto_parallel_context(device_num=args_opt.device_num, parallel_mode=ParallelMode.DATA_PARALLEL, gradients_mean=True, all_reduce_fusion_config=[107, 160]) # define network net = resnet50_quant(class_num=config.class_num) net.set_train(True) # weight init and load checkpoint file if args_opt.pre_trained: param_dict = load_checkpoint(args_opt.pre_trained) load_nonquant_param_into_quant_net(net, param_dict, ['step']) epoch_size = config.epoch_size - config.pretrained_epoch_size else: for _, cell in net.cells_and_names(): if isinstance(cell, nn.Conv2d): cell.weight.set_data(weight_init.initializer(weight_init.XavierUniform(), cell.weight.shape, cell.weight.dtype)) if isinstance(cell, nn.Dense): cell.weight.set_data(weight_init.initializer(weight_init.TruncatedNormal(), cell.weight.shape, cell.weight.dtype)) if not config.use_label_smooth: config.label_smooth_factor = 0.0 loss = CrossEntropy(smooth_factor=config.label_smooth_factor, num_classes=config.class_num) loss_scale = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False) # define dataset dataset = create_dataset(dataset_path=args_opt.dataset_path, do_train=True, repeat_num=1, batch_size=config.batch_size, target=args_opt.device_target) step_size = dataset.get_dataset_size() # convert fusion network to quantization aware network quantizer = QuantizationAwareTraining(bn_fold=True, per_channel=[True, False], symmetric=[True, False], one_conv_fold=False) net = quantizer.quantize(net) # get learning rate lr = get_lr(lr_init=config.lr_init, lr_end=0.0, lr_max=config.lr_max, warmup_epochs=config.warmup_epochs, total_epochs=config.epoch_size, steps_per_epoch=step_size, lr_decay_mode='cosine') if args_opt.pre_trained: lr = lr[config.pretrained_epoch_size * step_size:] lr = Tensor(lr) # define optimization opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, config.momentum, config.weight_decay, config.loss_scale) # define model model = Model(net, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale, metrics={'acc'}) print("============== Starting Training ==============") time_callback = TimeMonitor(data_size=step_size) loss_callback = LossMonitor() callbacks = [time_callback, loss_callback] if rank_id == 0: if config.save_checkpoint: config_ckpt = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_epochs * step_size, keep_checkpoint_max=config.keep_checkpoint_max) ckpt_callback = ModelCheckpoint(prefix="ResNet50", directory=config.save_checkpoint_path, config=config_ckpt) callbacks += [ckpt_callback] model.train(epoch_size, dataset, callbacks=callbacks) print("============== End Training ==============")