# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ ##############export checkpoint file into air, onnx, mindir models################# python export.py """ import argparse import numpy as np import mindspore as ms from mindspore import Tensor, load_checkpoint, load_param_into_net, export, context from src.config import config as cfg from src.shufflenetv1 import ShuffleNetV1 parser = argparse.ArgumentParser(description='ShuffleNetV1 export') parser.add_argument("--device_id", type=int, default=0, help="device id") parser.add_argument("--ckpt_file", type=str, required=True, help="checkpoint file path.") parser.add_argument("--file_name", type=str, default="shufflenetv1", help="output file name.") parser.add_argument('--file_format', type=str, choices=["AIR", "ONNX", "MINDIR"], default='AIR', help='file format') parser.add_argument("--device_target", type=str, choices=["Ascend", "GPU", "CPU"], default="Ascend", help="device target") parser.add_argument('--model_size', type=str, default='2.0x', choices=['2.0x', '1.5x', '1.0x', '0.5x'], help='shufflenetv1 model size') args = parser.parse_args() context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target) if args.device_target == "Ascend": context.set_context(device_id=args.device_id) if __name__ == '__main__': net = ShuffleNetV1(model_size=args.model_size) param_dict = load_checkpoint(args.ckpt_file) load_param_into_net(net, param_dict) image_height, image_width = (224, 224) input_arr = Tensor(np.ones([cfg.batch_size, 3, image_height, image_width]), ms.float32) export(net, input_arr, file_name=args.file_name, file_format=args.file_format)