# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ ##############test textcnn example on movie review################# python eval.py """ import argparse import mindspore.nn as nn from mindspore.nn.metrics import Accuracy from mindspore import context from mindspore.train.model import Model from mindspore.train.serialization import load_checkpoint, load_param_into_net from src.config import cfg_mr, cfg_subj, cfg_sst2 from src.textcnn import TextCNN from src.dataset import MovieReview, SST2, Subjectivity parser = argparse.ArgumentParser(description='TextCNN') parser.add_argument('--checkpoint_path', type=str, default=None, help='Checkpoint file path') parser.add_argument('--dataset', type=str, default="MR", choices=['MR', 'SUBJ', 'SST2']) args_opt = parser.parse_args() if __name__ == '__main__': if args_opt.dataset == 'MR': cfg = cfg_mr instance = MovieReview(root_dir=cfg.data_path, maxlen=cfg.word_len, split=0.9) elif args_opt.dataset == 'SUBJ': cfg = cfg_subj instance = Subjectivity(root_dir=cfg.data_path, maxlen=cfg.word_len, split=0.9) elif args_opt.dataset == 'SST2': cfg = cfg_sst2 instance = SST2(root_dir=cfg.data_path, maxlen=cfg.word_len, split=0.9) device_target = cfg.device_target context.set_context(mode=context.GRAPH_MODE, device_target=cfg.device_target) if device_target == "Ascend": context.set_context(device_id=cfg.device_id) dataset = instance.create_test_dataset(batch_size=cfg.batch_size) loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True) net = TextCNN(vocab_len=instance.get_dict_len(), word_len=cfg.word_len, num_classes=cfg.num_classes, vec_length=cfg.vec_length) opt = nn.Adam(filter(lambda x: x.requires_grad, net.get_parameters()), learning_rate=0.001, weight_decay=cfg.weight_decay) if args_opt.checkpoint_path is not None: param_dict = load_checkpoint(args_opt.checkpoint_path) print("load checkpoint from [{}].".format(args_opt.checkpoint_path)) else: param_dict = load_checkpoint(cfg.checkpoint_path) print("load checkpoint from [{}].".format(cfg.checkpoint_path)) load_param_into_net(net, param_dict) net.set_train(False) model = Model(net, loss_fn=loss, optimizer=opt, metrics={'acc': Accuracy()}) acc = model.eval(dataset) print("accuracy: ", acc)