# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.common.dtype as mstype import mindspore.nn as nn from mindspore import Tensor, context from mindspore.ops import operations as P context.set_context(mode=context.GRAPH_MODE, device_target='CPU') class TensorAdd(nn.Cell): def __init__(self): super(TensorAdd, self).__init__() self.add = P.TensorAdd() def construct(self, x, y): res = self.add(x, y) return res @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_tensor_add(): x0 = Tensor(np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(np.float32)) y0 = Tensor(np.random.uniform(-2, 2, (1, 1, 1, 1)).astype(np.float32)) x1 = Tensor(np.random.uniform(-2, 2, (1, 3, 1, 4)).astype(np.float32)) y1 = Tensor(np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(np.float32)) x2 = Tensor(np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(np.float32)) y2 = Tensor(2, mstype.float32) x3 = Tensor(2, mstype.float32) y3 = Tensor(2, mstype.float32) x4 = Tensor(np.random.uniform(-2, 2, (4)).astype(np.float32)) y4 = Tensor(np.random.uniform(-2, 2, (4, 4)).astype(np.float32)) add = TensorAdd() out = add(x0, y0).asnumpy() exp = x0.asnumpy() + y0.asnumpy() diff = np.abs(out - exp) err = np.ones(shape=exp.shape) * 1.0e-5 assert np.all(diff < err) assert out.shape == exp.shape out = add(x1, y1).asnumpy() exp = x1.asnumpy() + y1.asnumpy() diff = np.abs(out - exp) err = np.ones(shape=exp.shape) * 1.0e-5 assert np.all(diff < err) assert out.shape == exp.shape out = add(x2, y2).asnumpy() exp = x2.asnumpy() + y2.asnumpy() diff = np.abs(out - exp) err = np.ones(shape=exp.shape) * 1.0e-5 assert np.all(diff < err) assert out.shape == exp.shape out = add(x3, y3).asnumpy() exp = x3.asnumpy() + y3.asnumpy() diff = np.abs(out - exp) err = np.ones(shape=exp.shape) * 1.0e-5 assert np.all(diff < err) assert out.shape == exp.shape out = add(x4, y4).asnumpy() exp = x4.asnumpy() + y4.asnumpy() diff = np.abs(out - exp) err = np.ones(shape=exp.shape) * 1.0e-5 assert np.all(diff < err) assert out.shape == exp.shape