# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """export checkpoint file into air models""" import argparse import numpy as np from mindspore import Tensor, context from mindspore.train.serialization import load_checkpoint, load_param_into_net, export from src.maskrcnn.mask_rcnn_r50 import Mask_Rcnn_Resnet50 from src.config import config context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") if __name__ == '__main__': parser = argparse.ArgumentParser(description='maskrcnn_export') parser.add_argument('--ckpt_file', type=str, default='', help='maskrcnn ckpt file.') parser.add_argument('--output_file', type=str, default='', help='maskrcnn output air name.') args_opt = parser.parse_args() net = Mask_Rcnn_Resnet50(config=config) param_dict = load_checkpoint(args_opt.ckpt_file) load_param_into_net(net, param_dict) net.set_train(False) bs = config.test_batch_size img = Tensor(np.zeros([bs, 3, 768, 1280], np.float16)) img_metas = Tensor(np.zeros([bs, 4], np.float16)) gt_bboxes = Tensor(np.zeros([bs, 128, 4], np.float16)) gt_labels = Tensor(np.zeros([bs, 128], np.int32)) gt_num = Tensor(np.zeros([bs, 128], np.bool)) gt_mask = Tensor(np.zeros([bs, 128], np.bool)) export(net, img, img_metas, gt_bboxes, gt_labels, gt_num, gt_mask, file_name=args_opt.output_file, file_format="AIR")