# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ test_momentum """ import functools import numpy as np import mindspore.nn as nn import mindspore.context as context from mindspore import Parameter, ParameterTuple, Tensor from mindspore.ops import composite as C from mindspore.ops import functional as F from mindspore.ops import operations as P from ..ut_filter import non_graph_engine from ....mindspore_test_framework.mindspore_test import mindspore_test from ....mindspore_test_framework.pipeline.forward.compile_forward \ import pipeline_for_compile_forward_ge_graph_for_case_by_case_config # pylint: disable=W0613 # W0613: unused-argument run_opt = C.MultitypeFuncGraph("run_opt") grad_by_list = C.GradOperation(get_by_list=True) @run_opt.register("Function", "Tensor", "Tensor", "Tensor", "Tensor", "Tensor", "Tensor") def tensor_run_opt(opt, iters, learning_rate, momentum, gradient, variable, moment): """ tensor_run_opt """ success = True new_weight = opt(variable, moment, learning_rate, gradient, momentum)[0] success = F.depend(success, F.assign(variable, new_weight)) return success class OptimizerByMomentum(nn.Cell): """ OptimizerByMomentum definition """ def __init__(self, weights): super(OptimizerByMomentum, self).__init__() self.learning_rate = Parameter(0.1, name="learning_rate") self.momentum = Parameter(0.05, name="momentum") self.iter = Parameter(0, name="iter") self.weights = weights self.moments = weights.clone(prefix="moments", init='zeros') self.hyper_map = C.HyperMap() self.opt = P.ApplyMomentum() def construct(self, grads): success = True weights = self.weights moments = self.moments success = self.hyper_map(F.partial(run_opt, self.opt, self.iter, self.learning_rate, self.momentum), grads, weights, moments) return success class TrainStepWrap(nn.Cell): """ TrainStepWrap definition """ def __init__(self, network): super(TrainStepWrap, self).__init__() self.network = network self.weights = ParameterTuple(network.get_parameters()) self.optimizer = OptimizerByMomentum(self.weights) self.hyper_map = C.HyperMap() def construct(self, x, label): weights = self.weights grads = grad_by_list(self.network, weights)(x, label) return self.optimizer(grads) class NetWithLossClass(nn.Cell): """ NetWithLossClass definition """ def __init__(self, network): super(NetWithLossClass, self).__init__(auto_prefix=False) self.loss = nn.SoftmaxCrossEntropyWithLogits() self.network = network def construct(self, x, label): predict = self.network(x) return self.loss(predict, label) class Net(nn.Cell): """ Net definition """ def __init__(self): super(Net, self).__init__() self.weight = Parameter(Tensor(np.ones([64, 10]).astype(np.float32)), name="weight") self.bias = Parameter(Tensor(np.ones([10]).astype(np.float32)), name="bias") self.matmul = P.MatMul() self.biasAdd = P.BiasAdd() def construct(self, x): return self.biasAdd(self.matmul(x, self.weight), self.bias) test_case_ops = [ ('Momentum', { 'block': TrainStepWrap(NetWithLossClass(Net())), 'desc_inputs': [Tensor(np.ones([1, 64]).astype(np.float32)), Tensor(np.zeros([1, 10]).astype(np.float32))]}), ] test_case_lists = [test_case_ops] test_exec_case = functools.reduce(lambda x, y: x + y, test_case_lists) # use -k to select certain testcast # pytest tests/python/ops/test_ops.py::test_backward -k LayerNorm @non_graph_engine @mindspore_test(pipeline_for_compile_forward_ge_graph_for_case_by_case_config) def test_exec(): context.set_context(mode=context.GRAPH_MODE) return test_exec_case