# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import mindspore as ms import mindspore.nn as nn from mindspore import Tensor, Parameter from mindspore import context from mindspore.common.api import _Executor from mindspore.nn import TrainOneStepCell from mindspore.nn.optim import AdamWeightDecay from mindspore.ops import operations as P class NetWithLoss(nn.Cell): def __init__(self, network, strategy3): super(NetWithLoss, self).__init__() self.loss = P.SoftmaxCrossEntropyWithLogits().shard(strategy3) self.network = network def construct(self, x, b): predict = self.network(x) return self.loss(predict, b)[0] def compile_net(net, x, b): net.set_auto_parallel() _Executor().compile(net, x, b) def test_optimizer_clone_weight(): class Net(nn.Cell): def __init__(self, strategy1, strategy2, weight): super().__init__() self.weight = Parameter(weight, "w1") self.matmul = P.MatMul(transpose_a=False, transpose_b=True).shard(strategy1) self.relu = P.ReLU().shard(strategy2) def construct(self, x): out = self.matmul(x, self.weight) out = self.relu(out) return out context.set_auto_parallel_context(device_num=4, global_rank=0) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") strategy1 = ((2, 1), (2, 1)) strategy2 = ((4, 1),) strategy3 = ((4, 1), (4, 1)) x = Tensor(np.ones([64, 32]), dtype=ms.float32) weight = Tensor(np.ones([64, 32]), dtype=ms.float32) b = Tensor(np.ones([64, 64]), dtype=ms.float32) net = Net(strategy1, strategy2, weight) optimizer = AdamWeightDecay(net.trainable_params()) net_with_loss = NetWithLoss(net, strategy3) train_net = TrainOneStepCell(net_with_loss, optimizer) compile_net(train_net, x, b) def test_optimizer_clone_weight2(): class Net(nn.Cell): def __init__(self, strategy1, strategy2, weight): super().__init__() self.weight = Parameter(weight, "w1") self.matmul = P.MatMul(transpose_a=False, transpose_b=True).shard(strategy1) self.relu = P.ReLU().shard(strategy2) def construct(self, x): out = self.matmul(x, self.weight) out = self.relu(out) return out context.set_auto_parallel_context(device_num=4, global_rank=0) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") strategy1 = ((2, 1), (2, 1)) strategy2 = ((4, 1),) strategy3 = ((4, 1), (4, 1)) x = Tensor(np.ones([64, 32]), dtype=ms.float32) weight = Tensor(np.ones([64, 32]), dtype=ms.float32) b = Tensor(np.ones([64, 64]), dtype=ms.float32) net = Net(strategy1, strategy2, weight) optimizer = AdamWeightDecay(net.trainable_params()) net_with_loss = NetWithLoss(net, strategy3) train_net = TrainOneStepCell(net_with_loss, optimizer) compile_net(train_net, x, b)