# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import mindspore as ms import mindspore.nn as nn from mindspore import Tensor, Parameter from mindspore import context from mindspore.ops import operations as P class NetWithLoss(nn.Cell): def __init__(self, network): super(NetWithLoss, self).__init__() self.loss = P.SoftmaxCrossEntropyWithLogits() self.network = network def construct(self, x, b): predict = self.network(x) return self.loss(predict, b)[0] def test_parameter_init(): class Net(nn.Cell): def __init__(self, strategy1, weight): super().__init__() self.weight = Parameter(weight, "w1") self.matmul = P.MatMul(transpose_a=False, transpose_b=True).shard(strategy1) def construct(self, x): out = self.matmul(x, self.weight) return out context.set_auto_parallel_context(device_num=2, global_rank=0) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") strategy1 = ((1, 1), (2, 1)) context.set_context(mode=context.GRAPH_MODE) x = Tensor(np.ones([64, 32]), dtype=ms.float32) weight = Tensor(np.ones([64, 32]), dtype=ms.float32) net = Net(strategy1, weight) net(x,) if __name__ == '__main__': test_parameter_init()