# Copyright 2020-2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ ##############export checkpoint file into air and onnx models################# python export.py """ import argparse import numpy as np from mindspore import Tensor, load_checkpoint, load_param_into_net, export, context parser = argparse.ArgumentParser(description='resnet export') parser.add_argument('--network_dataset', type=str, default='resnet50_cifar10', choices=['resnet18_cifar10', 'resnet18_imagenet2012', 'resnet50_cifar10', 'resnet50_imagenet2012', 'resnet101_imagenet2012', "se-resnet50_imagenet2012"], help='network and dataset name.') parser.add_argument("--device_id", type=int, default=0, help="Device id") parser.add_argument("--batch_size", type=int, default=1, help="batch size") parser.add_argument("--ckpt_file", type=str, required=True, help="Checkpoint file path.") parser.add_argument("--file_name", type=str, default="resnet", help="output file name.") parser.add_argument('--width', type=int, default=224, help='input width') parser.add_argument('--height', type=int, default=224, help='input height') parser.add_argument("--file_format", type=str, choices=["AIR", "ONNX", "MINDIR"], default="AIR", help="file format") parser.add_argument("--device_target", type=str, default="Ascend", choices=["Ascend", "GPU", "CPU"], help="device target(default: Ascend)") args = parser.parse_args() context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target) if args.device_target == "Ascend": context.set_context(device_id=args.device_id) if __name__ == '__main__': if args.network_dataset == 'resnet18_cifar10': from src.config import config1 as config from src.resnet import resnet18 as resnet elif args.network_dataset == 'resnet18_imagenet2012': from src.config import config2 as config from src.resnet import resnet18 as resnet elif args.network_dataset == 'resnet50_cifar10': from src.config import config1 as config from src.resnet import resnet50 as resnet elif args.network_dataset == 'resnet50_imagenet2012': from src.config import config2 as config from src.resnet import resnet50 as resnet elif args.network_dataset == 'resnet101_imagenet2012': from src.config import config3 as config from src.resnet import resnet101 as resnet elif args.network_dataset == 'se-resnet50_imagenet2012': from src.config import config4 as config from src.resnet import se_resnet50 as resnet else: raise ValueError("network and dataset is not support.") net = resnet(config.class_num) assert args.ckpt_file is not None, "checkpoint_path is None." param_dict = load_checkpoint(args.ckpt_file) load_param_into_net(net, param_dict) input_arr = Tensor(np.zeros([args.batch_size, 3, args.height, args.width], np.float32)) export(net, input_arr, file_name=args.file_name, file_format=args.file_format)