# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """eval squeezenet.""" import os import argparse from mindspore import context from mindspore.common import set_seed from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits from mindspore.train.model import Model from mindspore.train.serialization import load_checkpoint, load_param_into_net from src.CrossEntropySmooth import CrossEntropySmooth parser = argparse.ArgumentParser(description='Image classification') parser.add_argument('--net', type=str, default='squeezenet', choices=['squeezenet', 'squeezenet_residual'], help='Model.') parser.add_argument('--dataset', type=str, default='cifar10', choices=['cifar10', 'imagenet'], help='Dataset.') parser.add_argument('--checkpoint_path', type=str, default=None, help='Checkpoint file path') parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path') parser.add_argument('--device_target', type=str, default='Ascend', help='Device target') args_opt = parser.parse_args() set_seed(1) if args_opt.net == "squeezenet": from src.squeezenet import SqueezeNet as squeezenet if args_opt.dataset == "cifar10": from src.config import config1 as config from src.dataset import create_dataset_cifar as create_dataset else: from src.config import config2 as config from src.dataset import create_dataset_imagenet as create_dataset else: from src.squeezenet import SqueezeNet_Residual as squeezenet if args_opt.dataset == "cifar10": from src.config import config3 as config from src.dataset import create_dataset_cifar as create_dataset else: from src.config import config4 as config from src.dataset import create_dataset_imagenet as create_dataset if __name__ == '__main__': target = args_opt.device_target # init context device_id = int(os.getenv('DEVICE_ID')) context.set_context(mode=context.GRAPH_MODE, device_target=target, device_id=device_id) # create dataset dataset = create_dataset(dataset_path=args_opt.dataset_path, do_train=False, batch_size=config.batch_size, target=target) step_size = dataset.get_dataset_size() # define net net = squeezenet(num_classes=config.class_num) # load checkpoint param_dict = load_checkpoint(args_opt.checkpoint_path) load_param_into_net(net, param_dict) net.set_train(False) # define loss if args_opt.dataset == "imagenet": if not config.use_label_smooth: config.label_smooth_factor = 0.0 loss = CrossEntropySmooth(sparse=True, reduction='mean', smooth_factor=config.label_smooth_factor, num_classes=config.class_num) else: loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean') # define model model = Model(net, loss_fn=loss, metrics={'top_1_accuracy', 'top_5_accuracy'}) # eval model res = model.eval(dataset) print("result:", res, "ckpt=", args_opt.checkpoint_path)