# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """eval Xception.""" import argparse import numpy as np from mindspore import Tensor, context, load_checkpoint, load_param_into_net, export from src.Xception import xception from src.config import config parser = argparse.ArgumentParser(description="Image classification") parser.add_argument("--device_id", type=int, default=0, help="Device id") parser.add_argument("--ckpt_file", type=str, required=True, help="xception ckpt file.") parser.add_argument("--width", type=int, default=299, help="input width") parser.add_argument("--height", type=int, default=299, help="input height") parser.add_argument("--file_name", type=str, default="xception", help="xception output file name.") parser.add_argument("--file_format", type=str, choices=["AIR", "ONNX", "MINDIR"], default="MINDIR", help="file format") parser.add_argument("--device_target", type=str, choices=["Ascend", "GPU", "CPU"], default="Ascend", help="device target") args = parser.parse_args() context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target) if args.device_target == "Ascend": context.set_context(device_id=args.device_id) if __name__ == "__main__": # define net net = xception(class_num=config.class_num) # load checkpoint param_dict = load_checkpoint(args.ckpt_file) load_param_into_net(net, param_dict) net.set_train(False) image = Tensor(np.zeros([config.batch_size, 3, args.height, args.width], np.float32)) export(net, image, file_name=args.file_name, file_format=args.file_format)