/** * Copyright 2020-2021 Huawei Technologies Co., Ltd * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "common/common.h" #include "minddata/dataset/include/datasets.h" #include "minddata/dataset/include/transforms.h" #include "minddata/dataset/include/vision.h" using namespace mindspore::dataset; using mindspore::dataset::BorderType; using mindspore::dataset::InterpolationMode; using mindspore::dataset::Tensor; class MindDataTestPipeline : public UT::DatasetOpTesting { protected: }; // Tests for vision ops (in alphabetical order) TEST_F(MindDataTestPipeline, TestAutoContrastSuccess1) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestAutoContrastSuccess1."; // Create an ImageFolder Dataset std::string folder_path = datasets_root_path_ + "/testPK/data/"; std::shared_ptr ds = ImageFolder(folder_path, true, RandomSampler(false, 5)); EXPECT_NE(ds, nullptr); // Create a Repeat operation on ds int32_t repeat_num = 3; ds = ds->Repeat(repeat_num); EXPECT_NE(ds, nullptr); // Create auto contrast object with default values std::shared_ptr auto_contrast(new vision::AutoContrast()); EXPECT_NE(auto_contrast, nullptr); // Create a Map operation on ds ds = ds->Map({auto_contrast}); EXPECT_NE(ds, nullptr); // Create a Batch operation on ds int32_t batch_size = 1; ds = ds->Batch(batch_size); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; // auto image = row["image"]; // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_EQ(i, 15); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestAutoContrastSuccess2) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestAutoContrastSuccess2."; // Create an ImageFolder Dataset std::string folder_path = datasets_root_path_ + "/testPK/data/"; std::shared_ptr ds = ImageFolder(folder_path, true, RandomSampler(false, 5)); EXPECT_NE(ds, nullptr); // Create a Repeat operation on ds int32_t repeat_num = 3; ds = ds->Repeat(repeat_num); EXPECT_NE(ds, nullptr); // Create auto contrast object std::shared_ptr auto_contrast(new vision::AutoContrast(10, {10, 20})); EXPECT_NE(auto_contrast, nullptr); // Create a Map operation on ds ds = ds->Map({auto_contrast}); EXPECT_NE(ds, nullptr); // Create a Batch operation on ds int32_t batch_size = 1; ds = ds->Batch(batch_size); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; // auto image = row["image"]; // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_EQ(i, 15); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestAutoContrastFail) { // FIXME: For error tests, need to check for failure from CreateIterator execution MS_LOG(INFO) << "Doing MindDataTestPipeline-TestAutoContrastFail with invalid params."; // Testing invalid cutoff < 0 std::shared_ptr auto_contrast1(new vision::AutoContrast(-1.0)); // FIXME: Need to check error Status is returned during CreateIterator EXPECT_NE(auto_contrast1, nullptr); // Testing invalid cutoff > 100 std::shared_ptr auto_contrast2(new vision::AutoContrast(110.0, {10, 20})); EXPECT_NE(auto_contrast2, nullptr); } TEST_F(MindDataTestPipeline, TestBoundingBoxAugmentSuccess) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestBoundingBoxAugmentSuccess."; // Create an VOC Dataset std::string folder_path = datasets_root_path_ + "/testVOC2012_2"; std::shared_ptr ds = VOC(folder_path, "Detection", "train", {}, true, SequentialSampler(0, 3)); EXPECT_NE(ds, nullptr); /* FIXME - Resolve BoundingBoxAugment to properly handle TensorTransform input // Create objects for the tensor ops std::shared_ptr bound_box_augment = std::make_shared(vision::RandomRotation({90.0}), 1.0); EXPECT_NE(bound_box_augment, nullptr); // Create a Map operation on ds ds = ds->Map({bound_box_augment}, {"image", "bbox"}, {"image", "bbox"}, {"image", "bbox"}); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; // auto image = row["image"]; // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_EQ(i, 3); // Manually terminate the pipeline iter->Stop(); */ } TEST_F(MindDataTestPipeline, TestBoundingBoxAugmentFail) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestBoundingBoxAugmentFail with invalid params."; // FIXME: For error tests, need to check for failure from CreateIterator execution /* // Testing invalid ratio < 0.0 std::shared_ptr bound_box_augment = std::make_shared(vision::RandomRotation({90.0}), -1.0); EXPECT_EQ(bound_box_augment, nullptr); // Testing invalid ratio > 1.0 std::shared_ptr bound_box_augment1 = std::make_shared(vision::RandomRotation({90.0}), 2.0); EXPECT_EQ(bound_box_augment1, nullptr); // Testing invalid transform std::shared_ptr bound_box_augment2 = std::make_shared(nullptr, 0.5); EXPECT_EQ(bound_box_augment2, nullptr); */ } TEST_F(MindDataTestPipeline, TestCenterCrop) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCenterCrop with single integer input."; // Create an ImageFolder Dataset std::string folder_path = datasets_root_path_ + "/testPK/data/"; std::shared_ptr ds = ImageFolder(folder_path, true, RandomSampler(false, 5)); EXPECT_NE(ds, nullptr); // Create a Repeat operation on ds int32_t repeat_num = 3; ds = ds->Repeat(repeat_num); EXPECT_NE(ds, nullptr); // Create centre crop object with square crop std::shared_ptr centre_out1(new vision::CenterCrop({30})); EXPECT_NE(centre_out1, nullptr); // Create a Map operation on ds ds = ds->Map({centre_out1}); EXPECT_NE(ds, nullptr); // Create a Batch operation on ds int32_t batch_size = 1; ds = ds->Batch(batch_size); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; // auto image = row["image"]; // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_EQ(i, 15); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestCenterCropFail) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCenterCrop with invalid parameters."; // FIXME: For error tests, need to check for failure from CreateIterator execution // center crop height value negative std::shared_ptr center_crop1(new mindspore::dataset::vision::CenterCrop({-32, 32})); EXPECT_NE(center_crop1, nullptr); // center crop width value negative std::shared_ptr center_crop2(new mindspore::dataset::vision::CenterCrop({32, -32})); EXPECT_NE(center_crop2, nullptr); // 0 value would result in nullptr std::shared_ptr center_crop3(new mindspore::dataset::vision::CenterCrop({0, 32})); EXPECT_NE(center_crop3, nullptr); // center crop with 3 values std::shared_ptr center_crop4(new mindspore::dataset::vision::CenterCrop({10, 20, 30})); EXPECT_NE(center_crop4, nullptr); } TEST_F(MindDataTestPipeline, TestCropFail) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCrop with invalid parameters."; // FIXME: For error tests, need to check for failure from CreateIterator execution // wrong width std::shared_ptr crop1(new mindspore::dataset::vision::Crop({0, 0}, {32, -32})); EXPECT_NE(crop1, nullptr); // wrong height std::shared_ptr crop2(new mindspore::dataset::vision::Crop({0, 0}, {-32, -32})); EXPECT_NE(crop2, nullptr); // zero height std::shared_ptr crop3(new mindspore::dataset::vision::Crop({0, 0}, {0, 32})); EXPECT_NE(crop3, nullptr); // negative coordinates std::shared_ptr crop4(new mindspore::dataset::vision::Crop({-1, 0}, {32, 32})); EXPECT_NE(crop4, nullptr); } TEST_F(MindDataTestPipeline, TestCutMixBatchSuccess1) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCutMixBatchSuccess1."; // Testing CutMixBatch on a batch of CHW images // Create a Cifar10 Dataset std::string folder_path = datasets_root_path_ + "/testCifar10Data/"; int number_of_classes = 10; std::shared_ptr ds = Cifar10(folder_path, "all", RandomSampler(false, 10)); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr hwc_to_chw = std::make_shared(); EXPECT_NE(hwc_to_chw, nullptr); // Create a Map operation on ds ds = ds->Map({hwc_to_chw}, {"image"}); EXPECT_NE(ds, nullptr); // Create a Batch operation on ds int32_t batch_size = 5; ds = ds->Batch(batch_size); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr one_hot_op = std::make_shared(number_of_classes); EXPECT_NE(one_hot_op, nullptr); // Create a Map operation on ds ds = ds->Map({one_hot_op}, {"label"}); EXPECT_NE(ds, nullptr); std::shared_ptr cutmix_batch_op = std::make_shared(mindspore::dataset::ImageBatchFormat::kNCHW, 1.0, 1.0); EXPECT_NE(cutmix_batch_op, nullptr); // Create a Map operation on ds ds = ds->Map({cutmix_batch_op}, {"image", "label"}); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; // auto image = row["image"]; // auto label = row["label"]; // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); // MS_LOG(INFO) << "Label shape: " << label->shape(); // EXPECT_EQ(image->shape().AsVector().size() == 4 && batch_size == image->shape()[0] && 3 == image->shape()[1] && // 32 == image->shape()[2] && 32 == image->shape()[3], // true); // EXPECT_EQ(label->shape().AsVector().size() == 2 && batch_size == label->shape()[0] && // number_of_classes == label->shape()[1], // true); iter->GetNextRow(&row); } EXPECT_EQ(i, 2); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestCutMixBatchSuccess2) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCutMixBatchSuccess2."; // Calling CutMixBatch on a batch of HWC images with default values of alpha and prob // Create a Cifar10 Dataset std::string folder_path = datasets_root_path_ + "/testCifar10Data/"; int number_of_classes = 10; std::shared_ptr ds = Cifar10(folder_path, "all", RandomSampler(false, 10)); EXPECT_NE(ds, nullptr); // Create a Batch operation on ds int32_t batch_size = 5; ds = ds->Batch(batch_size); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr one_hot_op = std::make_shared(number_of_classes); EXPECT_NE(one_hot_op, nullptr); // Create a Map operation on ds ds = ds->Map({one_hot_op}, {"label"}); EXPECT_NE(ds, nullptr); std::shared_ptr cutmix_batch_op = std::make_shared(mindspore::dataset::ImageBatchFormat::kNHWC); EXPECT_NE(cutmix_batch_op, nullptr); // Create a Map operation on ds ds = ds->Map({cutmix_batch_op}, {"image", "label"}); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; // auto image = row["image"]; // auto label = row["label"]; // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); // MS_LOG(INFO) << "Label shape: " << label->shape(); // EXPECT_EQ(image->shape().AsVector().size() == 4 && batch_size == image->shape()[0] && 32 == image->shape()[1] && // 32 == image->shape()[2] && 3 == image->shape()[3], // true); // EXPECT_EQ(label->shape().AsVector().size() == 2 && batch_size == label->shape()[0] && // number_of_classes == label->shape()[1], // true); iter->GetNextRow(&row); } EXPECT_EQ(i, 2); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestCutMixBatchFail1) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCutMixBatchFail1 with invalid negative alpha parameter."; // Create a Cifar10 Dataset std::string folder_path = datasets_root_path_ + "/testCifar10Data/"; std::shared_ptr ds = Cifar10(folder_path, "all", RandomSampler(false, 10)); EXPECT_NE(ds, nullptr); // Create a Batch operation on ds int32_t batch_size = 5; ds = ds->Batch(batch_size); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr one_hot_op = std::make_shared(10); EXPECT_NE(one_hot_op, nullptr); // Create a Map operation on ds ds = ds->Map({one_hot_op}, {"label"}); EXPECT_NE(ds, nullptr); // Create CutMixBatch operation with invalid input, alpha<0 std::shared_ptr cutmix_batch_op = std::make_shared(mindspore::dataset::ImageBatchFormat::kNHWC, -1, 0.5); EXPECT_NE(cutmix_batch_op, nullptr); // Create a Map operation on ds ds = ds->Map({cutmix_batch_op}); EXPECT_NE(ds, nullptr); std::shared_ptr iter = ds->CreateIterator(); // Expect failure: Invalid CutMixBatch input EXPECT_EQ(iter, nullptr); } TEST_F(MindDataTestPipeline, TestCutMixBatchFail2) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCutMixBatchFail2 with invalid negative prob parameter."; // Create a Cifar10 Dataset std::string folder_path = datasets_root_path_ + "/testCifar10Data/"; std::shared_ptr ds = Cifar10(folder_path, "all", RandomSampler(false, 10)); EXPECT_NE(ds, nullptr); // Create a Batch operation on ds int32_t batch_size = 5; ds = ds->Batch(batch_size); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr one_hot_op = std::make_shared(10); EXPECT_NE(one_hot_op, nullptr); // Create a Map operation on ds ds = ds->Map({one_hot_op}, {"label"}); EXPECT_NE(ds, nullptr); // Create CutMixBatch operation with invalid input, prob<0 std::shared_ptr cutmix_batch_op = std::make_shared(mindspore::dataset::ImageBatchFormat::kNHWC, 1, -0.5); EXPECT_NE(cutmix_batch_op, nullptr); // Create a Map operation on ds ds = ds->Map({cutmix_batch_op}); EXPECT_NE(ds, nullptr); std::shared_ptr iter = ds->CreateIterator(); // Expect failure: Invalid CutMixBatch input EXPECT_EQ(iter, nullptr); } TEST_F(MindDataTestPipeline, TestCutMixBatchFail3) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCutMixBatchFail3 with invalid zero alpha parameter."; // Create a Cifar10 Dataset std::string folder_path = datasets_root_path_ + "/testCifar10Data/"; std::shared_ptr ds = Cifar10(folder_path, "all", RandomSampler(false, 10)); EXPECT_NE(ds, nullptr); // Create a Batch operation on ds int32_t batch_size = 5; ds = ds->Batch(batch_size); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr one_hot_op = std::make_shared(10); EXPECT_NE(one_hot_op, nullptr); // Create a Map operation on ds ds = ds->Map({one_hot_op}, {"label"}); EXPECT_NE(ds, nullptr); // Create CutMixBatch operation with invalid input, alpha=0 (boundary case) std::shared_ptr cutmix_batch_op = std::make_shared(mindspore::dataset::ImageBatchFormat::kNHWC, 0.0, 0.5); EXPECT_NE(cutmix_batch_op, nullptr); // Create a Map operation on ds ds = ds->Map({cutmix_batch_op}); EXPECT_NE(ds, nullptr); std::shared_ptr iter = ds->CreateIterator(); // Expect failure: Invalid CutMixBatch input EXPECT_EQ(iter, nullptr); } TEST_F(MindDataTestPipeline, TestCutMixBatchFail4) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCutMixBatchFail4 with invalid greater than 1 prob parameter."; std::string folder_path = datasets_root_path_ + "/testCifar10Data/"; std::shared_ptr ds = Cifar10(folder_path, "all", RandomSampler(false, 10)); EXPECT_NE(ds, nullptr); // Create a Batch operation on ds int32_t batch_size = 10; ds = ds->Batch(batch_size); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr one_hot_op = std::make_shared(10); EXPECT_NE(one_hot_op, nullptr); // Create a Map operation on ds ds = ds->Map({one_hot_op}, {"label"}); EXPECT_NE(ds, nullptr); // Create CutMixBatch operation with invalid input, prob>1 std::shared_ptr cutmix_batch_op = std::make_shared(mindspore::dataset::ImageBatchFormat::kNHWC, 1, 1.5); EXPECT_NE(cutmix_batch_op, nullptr); // Create a Map operation on ds ds = ds->Map({cutmix_batch_op}); EXPECT_NE(ds, nullptr); std::shared_ptr iter = ds->CreateIterator(); // Expect failure: Invalid CutMixBatch input EXPECT_EQ(iter, nullptr); } TEST_F(MindDataTestPipeline, TestCutOutFail1) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCutOutFail1 with invalid parameters."; // FIXME: For error tests, need to check for failure from CreateIterator execution // Create object for the tensor op // Invalid negative length std::shared_ptr cutout_op = std::make_shared(-10); EXPECT_NE(cutout_op, nullptr); // Invalid negative number of patches cutout_op = std::make_shared(10, -1); EXPECT_NE(cutout_op, nullptr); } TEST_F(MindDataTestPipeline, TestCutOutFail2) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCutOutFail2 with invalid params, boundary cases."; // FIXME: For error tests, need to check for failure from CreateIterator execution // Create object for the tensor op // Invalid zero length std::shared_ptr cutout_op = std::make_shared(0); EXPECT_NE(cutout_op, nullptr); // Invalid zero number of patches cutout_op = std::make_shared(10, 0); EXPECT_NE(cutout_op, nullptr); } TEST_F(MindDataTestPipeline, TestCutOut) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCutOut."; // Create an ImageFolder Dataset std::string folder_path = datasets_root_path_ + "/testPK/data/"; std::shared_ptr ds = ImageFolder(folder_path, true, RandomSampler(false, 10)); EXPECT_NE(ds, nullptr); // Create a Repeat operation on ds int32_t repeat_num = 2; ds = ds->Repeat(repeat_num); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr cut_out1 = std::make_shared(30, 5); EXPECT_NE(cut_out1, nullptr); std::shared_ptr cut_out2 = std::make_shared(30); EXPECT_NE(cut_out2, nullptr); // Create a Map operation on ds ds = ds->Map({cut_out1, cut_out2}); EXPECT_NE(ds, nullptr); // Create a Batch operation on ds int32_t batch_size = 1; ds = ds->Batch(batch_size); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; // auto image = row["image"]; // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_EQ(i, 20); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestDecode) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestDecode."; // Create an ImageFolder Dataset std::string folder_path = datasets_root_path_ + "/testPK/data/"; std::shared_ptr ds = ImageFolder(folder_path, false, RandomSampler(false, 10)); EXPECT_NE(ds, nullptr); // Create a Repeat operation on ds int32_t repeat_num = 2; ds = ds->Repeat(repeat_num); EXPECT_NE(ds, nullptr); // Create Decode object vision::Decode decode = vision::Decode(true); // Create a Map operation on ds ds = ds->Map({decode}); EXPECT_NE(ds, nullptr); // Create a Batch operation on ds int32_t batch_size = 1; ds = ds->Batch(batch_size); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; // auto image = row["image"]; // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_EQ(i, 20); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestHwcToChw) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestHwcToChw."; // Create an ImageFolder Dataset std::string folder_path = datasets_root_path_ + "/testPK/data/"; std::shared_ptr ds = ImageFolder(folder_path, true, RandomSampler(false, 10)); EXPECT_NE(ds, nullptr); // Create a Repeat operation on ds int32_t repeat_num = 2; ds = ds->Repeat(repeat_num); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr channel_swap = std::make_shared(); EXPECT_NE(channel_swap, nullptr); // Create a Map operation on ds ds = ds->Map({channel_swap}); EXPECT_NE(ds, nullptr); // Create a Batch operation on ds int32_t batch_size = 1; ds = ds->Batch(batch_size); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; // auto image = row["image"]; // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); // check if the image is in NCHW // EXPECT_EQ(batch_size == image->shape()[0] && 3 == image->shape()[1] && 2268 == image->shape()[2] && // 4032 == image->shape()[3], // true); iter->GetNextRow(&row); } EXPECT_EQ(i, 20); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestInvert) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestInvert."; // Create an ImageFolder Dataset std::string folder_path = datasets_root_path_ + "/testPK/data/"; std::shared_ptr ds = ImageFolder(folder_path, true, RandomSampler(false, 20)); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr invert_op = std::make_shared(); EXPECT_NE(invert_op, nullptr); // Create a Map operation on ds ds = ds->Map({invert_op}); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; // auto image = row["image"]; // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_EQ(i, 20); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestMixUpBatchFail1) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestMixUpBatchFail1 with negative alpha parameter."; // FIXME: For error tests, need to check for failure from CreateIterator execution // Create a Cifar10 Dataset std::string folder_path = datasets_root_path_ + "/testCifar10Data/"; std::shared_ptr ds = Cifar10(folder_path, "all", RandomSampler(false, 10)); EXPECT_NE(ds, nullptr); // Create a Batch operation on ds int32_t batch_size = 5; ds = ds->Batch(batch_size); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr one_hot_op = std::make_shared(10); EXPECT_NE(one_hot_op, nullptr); // Create a Map operation on ds ds = ds->Map({one_hot_op}, {"label"}); EXPECT_NE(ds, nullptr); // Create MixUpBatch operation with invalid input, alpha<0 std::shared_ptr mixup_batch_op = std::make_shared(-1); EXPECT_NE(mixup_batch_op, nullptr); // Create a Map operation on ds ds = ds->Map({mixup_batch_op}); EXPECT_NE(ds, nullptr); std::shared_ptr iter = ds->CreateIterator(); // Expect failure: Invalid MixUpBatch input EXPECT_EQ(iter, nullptr); } TEST_F(MindDataTestPipeline, TestMixUpBatchFail2) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestMixUpBatchFail2 with zero alpha parameter."; // FIXME: For error tests, need to check for failure from CreateIterator execution // Create a Cifar10 Dataset std::string folder_path = datasets_root_path_ + "/testCifar10Data/"; std::shared_ptr ds = Cifar10(folder_path, "all", RandomSampler(false, 10)); EXPECT_NE(ds, nullptr); // Create a Batch operation on ds int32_t batch_size = 5; ds = ds->Batch(batch_size); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr one_hot_op = std::make_shared(10); EXPECT_NE(one_hot_op, nullptr); // Create a Map operation on ds ds = ds->Map({one_hot_op}, {"label"}); EXPECT_NE(ds, nullptr); // Create MixUpBatch operation with invalid input, alpha<0 (boundary case) std::shared_ptr mixup_batch_op = std::make_shared(0.0); EXPECT_NE(mixup_batch_op, nullptr); // Create a Map operation on ds ds = ds->Map({mixup_batch_op}); EXPECT_NE(ds, nullptr); std::shared_ptr iter = ds->CreateIterator(); // Expect failure: Invalid MixUpBatch input EXPECT_EQ(iter, nullptr); } TEST_F(MindDataTestPipeline, TestMixUpBatchSuccess1) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestMixUpBatchSuccess1 with explicit alpha parameter."; // Create a Cifar10 Dataset std::string folder_path = datasets_root_path_ + "/testCifar10Data/"; std::shared_ptr ds = Cifar10(folder_path, "all", RandomSampler(false, 10)); EXPECT_NE(ds, nullptr); // Create a Batch operation on ds int32_t batch_size = 5; ds = ds->Batch(batch_size); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr one_hot_op = std::make_shared(10); EXPECT_NE(one_hot_op, nullptr); // Create a Map operation on ds ds = ds->Map({one_hot_op}, {"label"}); EXPECT_NE(ds, nullptr); std::shared_ptr mixup_batch_op = std::make_shared(2.0); EXPECT_NE(mixup_batch_op, nullptr); // Create a Map operation on ds ds = ds->Map({mixup_batch_op}, {"image", "label"}); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; // auto image = row["image"]; // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_EQ(i, 2); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestMixUpBatchSuccess2) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestMixUpBatchSuccess1 with default alpha parameter."; // Create a Cifar10 Dataset std::string folder_path = datasets_root_path_ + "/testCifar10Data/"; std::shared_ptr ds = Cifar10(folder_path, "all", RandomSampler(false, 10)); EXPECT_NE(ds, nullptr); // Create a Batch operation on ds int32_t batch_size = 5; ds = ds->Batch(batch_size); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr one_hot_op = std::make_shared(10); EXPECT_NE(one_hot_op, nullptr); // Create a Map operation on ds ds = ds->Map({one_hot_op}, {"label"}); EXPECT_NE(ds, nullptr); std::shared_ptr mixup_batch_op = std::make_shared(); EXPECT_NE(mixup_batch_op, nullptr); // Create a Map operation on ds ds = ds->Map({mixup_batch_op}, {"image", "label"}); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; // auto image = row["image"]; // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_EQ(i, 2); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestNormalize) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestNormalize."; // Create an ImageFolder Dataset std::string folder_path = datasets_root_path_ + "/testPK/data/"; std::shared_ptr ds = ImageFolder(folder_path, true, RandomSampler(false, 10)); EXPECT_NE(ds, nullptr); // Create a Repeat operation on ds int32_t repeat_num = 2; ds = ds->Repeat(repeat_num); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr normalize(new vision::Normalize({121.0, 115.0, 0.0}, {70.0, 68.0, 71.0})); EXPECT_NE(normalize, nullptr); // Create a Map operation on ds ds = ds->Map({normalize}); EXPECT_NE(ds, nullptr); // Create a Batch operation on ds int32_t batch_size = 1; ds = ds->Batch(batch_size); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; // auto image = row["image"]; // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_EQ(i, 20); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestNormalizeFail) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestNormalizeFail with invalid parameters."; // FIXME: For error tests, need to check for failure from CreateIterator execution // std value at 0.0 std::shared_ptr normalize1( new mindspore::dataset::vision::Normalize({121.0, 115.0, 100.0}, {0.0, 68.0, 71.0})); EXPECT_NE(normalize1, nullptr); // mean out of range std::shared_ptr normalize2( new mindspore::dataset::vision::Normalize({121.0, 0.0, 100.0}, {256.0, 68.0, 71.0})); EXPECT_NE(normalize2, nullptr); // mean out of range std::shared_ptr normalize3( new mindspore::dataset::vision::Normalize({256.0, 0.0, 100.0}, {70.0, 68.0, 71.0})); EXPECT_NE(normalize3, nullptr); // mean out of range std::shared_ptr normalize4( new mindspore::dataset::vision::Normalize({-1.0, 0.0, 100.0}, {70.0, 68.0, 71.0})); EXPECT_NE(normalize4, nullptr); // normalize with 2 values (not 3 values) for mean std::shared_ptr normalize5( new mindspore::dataset::vision::Normalize({121.0, 115.0}, {70.0, 68.0, 71.0})); EXPECT_NE(normalize5, nullptr); // normalize with 2 values (not 3 values) for standard deviation std::shared_ptr normalize6( new mindspore::dataset::vision::Normalize({121.0, 115.0, 100.0}, {68.0, 71.0})); EXPECT_NE(normalize6, nullptr); } TEST_F(MindDataTestPipeline, TestNormalizePad) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestNormalizePad."; // Create an ImageFolder Dataset std::string folder_path = datasets_root_path_ + "/testPK/data/"; std::shared_ptr ds = ImageFolder(folder_path, true, RandomSampler(false, 10)); EXPECT_NE(ds, nullptr); // Create a Repeat operation on ds int32_t repeat_num = 2; ds = ds->Repeat(repeat_num); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr normalizepad( new vision::NormalizePad({121.0, 115.0, 100.0}, {70.0, 68.0, 71.0}, "float32")); EXPECT_NE(normalizepad, nullptr); // Create a Map operation on ds ds = ds->Map({normalizepad}); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; // auto image = row["image"]; // EXPECT_EQ(image->shape()[2], 4); // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_EQ(i, 20); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestNormalizePadFail) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestNormalizePadFail with invalid parameters."; // FIXME: For error tests, need to check for failure from CreateIterator execution // std value at 0.0 std::shared_ptr normalizepad1( new mindspore::dataset::vision::NormalizePad({121.0, 115.0, 100.0}, {0.0, 68.0, 71.0})); EXPECT_NE(normalizepad1, nullptr); // normalizepad with 2 values (not 3 values) for mean std::shared_ptr normalizepad2( new mindspore::dataset::vision::NormalizePad({121.0, 115.0}, {70.0, 68.0, 71.0})); EXPECT_NE(normalizepad2, nullptr); // normalizepad with 2 values (not 3 values) for standard deviation std::shared_ptr normalizepad3( new mindspore::dataset::vision::NormalizePad({121.0, 115.0, 100.0}, {68.0, 71.0})); EXPECT_NE(normalizepad3, nullptr); // normalizepad with invalid dtype std::shared_ptr normalizepad4( new mindspore::dataset::vision::NormalizePad({121.0, 115.0, 100.0}, {68.0, 71.0, 71.0}, "123")); EXPECT_NE(normalizepad4, nullptr); } TEST_F(MindDataTestPipeline, TestPad) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestPad."; // Create an ImageFolder Dataset std::string folder_path = datasets_root_path_ + "/testPK/data/"; std::shared_ptr ds = ImageFolder(folder_path, true, RandomSampler(false, 10)); EXPECT_NE(ds, nullptr); // Create a Repeat operation on ds int32_t repeat_num = 2; ds = ds->Repeat(repeat_num); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr pad_op1(new vision::Pad({1, 2, 3, 4}, {0}, BorderType::kSymmetric)); EXPECT_NE(pad_op1, nullptr); std::shared_ptr pad_op2(new vision::Pad({1}, {1, 1, 1}, BorderType::kEdge)); EXPECT_NE(pad_op2, nullptr); std::shared_ptr pad_op3(new vision::Pad({1, 4})); EXPECT_NE(pad_op3, nullptr); // Create a Map operation on ds ds = ds->Map({pad_op1, pad_op2, pad_op3}); EXPECT_NE(ds, nullptr); // Create a Batch operation on ds int32_t batch_size = 1; ds = ds->Batch(batch_size); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; // auto image = row["image"]; // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_EQ(i, 20); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestRandomAffineFail) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomAffineFail with invalid parameters."; // FIXME: For error tests, need to check for failure from CreateIterator execution // Create objects for the tensor ops std::shared_ptr affine1(new vision::RandomAffine({0.0, 0.0}, {})); EXPECT_NE(affine1, nullptr); // Invalid number of values for translate std::shared_ptr affine2(new vision::RandomAffine({0.0, 0.0}, {1, 1, 1, 1, 1})); EXPECT_NE(affine2, nullptr); // Invalid number of values for shear std::shared_ptr affine3(new vision::RandomAffine({30.0, 30.0}, {0.0, 0.0}, {2.0, 2.0}, {10.0})); EXPECT_NE(affine3, nullptr); } TEST_F(MindDataTestPipeline, TestRandomAffineSuccess1) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomAffineSuccess1 with non-default parameters."; // Create an ImageFolder Dataset std::string folder_path = datasets_root_path_ + "/testPK/data/"; std::shared_ptr ds = ImageFolder(folder_path, true, RandomSampler(false, 10)); EXPECT_NE(ds, nullptr); // Create a Repeat operation on ds int32_t repeat_num = 2; ds = ds->Repeat(repeat_num); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr affine( new vision::RandomAffine({30.0, 30.0}, {-1.0, 1.0, -1.0, 1.0}, {2.0, 2.0}, {10.0, 10.0, 20.0, 20.0})); EXPECT_NE(affine, nullptr); // Create a Map operation on ds ds = ds->Map({affine}); EXPECT_NE(ds, nullptr); // Create a Batch operation on ds int32_t batch_size = 1; ds = ds->Batch(batch_size); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; // auto image = row["image"]; // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_EQ(i, 20); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestRandomAffineSuccess2) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomAffineSuccess2 with default parameters."; // Create an ImageFolder Dataset std::string folder_path = datasets_root_path_ + "/testPK/data/"; std::shared_ptr ds = ImageFolder(folder_path, true, RandomSampler(false, 10)); EXPECT_NE(ds, nullptr); // Create a Repeat operation on ds int32_t repeat_num = 2; ds = ds->Repeat(repeat_num); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr affine(new vision::RandomAffine({0.0, 0.0})); EXPECT_NE(affine, nullptr); // Create a Map operation on ds ds = ds->Map({affine}); EXPECT_NE(ds, nullptr); // Create a Batch operation on ds int32_t batch_size = 1; ds = ds->Batch(batch_size); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; // auto image = row["image"]; // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_EQ(i, 20); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestRandomColor) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomColor with non-default parameters."; // Create an ImageFolder Dataset std::string folder_path = datasets_root_path_ + "/testPK/data/"; std::shared_ptr ds = ImageFolder(folder_path, true, RandomSampler(false, 10)); EXPECT_NE(ds, nullptr); // Create a Repeat operation on ds int32_t repeat_num = 2; ds = ds->Repeat(repeat_num); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops // Valid case: Set lower bound and upper bound to be the same value zero std::shared_ptr random_color_op_1 = std::make_shared(0.0, 0.0); EXPECT_NE(random_color_op_1, nullptr); // Failure case: Set invalid lower bound greater than upper bound // FIXME: For error tests, need to check for failure from CreateIterator execution std::shared_ptr random_color_op_2 = std::make_shared(1.0, 0.1); EXPECT_NE(random_color_op_2, nullptr); // Valid case: Set lower bound as zero and less than upper bound std::shared_ptr random_color_op_3 = std::make_shared(0.0, 1.1); EXPECT_NE(random_color_op_3, nullptr); // Failure case: Set invalid negative lower bound // FIXME: For error tests, need to check for failure from CreateIterator execution std::shared_ptr random_color_op_4 = std::make_shared(-0.5, 0.5); EXPECT_NE(random_color_op_4, nullptr); // Create a Map operation on ds ds = ds->Map({random_color_op_1, random_color_op_3}); EXPECT_NE(ds, nullptr); // Create a Batch operation on ds int32_t batch_size = 1; ds = ds->Batch(batch_size); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; // auto image = row["image"]; // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_EQ(i, 20); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestRandomColorAdjust) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomColorAdjust."; // Create an ImageFolder Dataset std::string folder_path = datasets_root_path_ + "/testPK/data/"; std::shared_ptr ds = ImageFolder(folder_path, true, RandomSampler(false, 10)); EXPECT_NE(ds, nullptr); // Create a Repeat operation on ds int32_t repeat_num = 2; ds = ds->Repeat(repeat_num); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops // Use single value for vectors std::shared_ptr random_color_adjust1(new vision::RandomColorAdjust({1.0}, {0.0}, {0.5}, {0.5})); EXPECT_NE(random_color_adjust1, nullptr); // Use same 2 values for vectors std::shared_ptr random_color_adjust2(new vision::RandomColorAdjust({1.0, 1.0}, {0.0, 0.0}, {0.5, 0.5}, {0.5, 0.5})); EXPECT_NE(random_color_adjust2, nullptr); // Use different 2 value for vectors std::shared_ptr random_color_adjust3(new vision::RandomColorAdjust({0.5, 1.0}, {0.0, 0.5}, {0.25, 0.5}, {0.25, 0.5})); EXPECT_NE(random_color_adjust3, nullptr); // Use default input values std::shared_ptr random_color_adjust4(new vision::RandomColorAdjust()); EXPECT_NE(random_color_adjust4, nullptr); // Use subset of explicitly set parameters std::shared_ptr random_color_adjust5(new vision::RandomColorAdjust({0.0, 0.5}, {0.25})); EXPECT_NE(random_color_adjust5, nullptr); // Create a Map operation on ds ds = ds->Map( {random_color_adjust1, random_color_adjust2, random_color_adjust3, random_color_adjust4, random_color_adjust5}); EXPECT_NE(ds, nullptr); // Create a Batch operation on ds int32_t batch_size = 1; ds = ds->Batch(batch_size); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; // auto image = row["image"]; // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_EQ(i, 20); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestRandomColorAdjustFail) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomColorAdjustFail."; // FIXME: For error tests, need to check for failure from CreateIterator execution // brightness out of range std::shared_ptr random_color_adjust1(new vision::RandomColorAdjust({-1.0})); EXPECT_NE(random_color_adjust1, nullptr); // contrast out of range std::shared_ptr random_color_adjust2(new vision::RandomColorAdjust({1.0}, {-0.1})); EXPECT_NE(random_color_adjust2, nullptr); // saturation out of range std::shared_ptr random_color_adjust3(new vision::RandomColorAdjust({0.0}, {0.0}, {-0.2})); EXPECT_NE(random_color_adjust3, nullptr); // hue out of range std::shared_ptr random_color_adjust4(new vision::RandomColorAdjust({0.0}, {0.0}, {0.0}, {-0.6})); EXPECT_NE(random_color_adjust4, nullptr); std::shared_ptr random_color_adjust5(new vision::RandomColorAdjust({0.0}, {0.0}, {0.0}, {-0.5, 0.6})); EXPECT_NE(random_color_adjust5, nullptr); std::shared_ptr random_color_adjust6(new vision::RandomColorAdjust({0.0}, {0.0}, {0.0}, {0.51})); EXPECT_NE(random_color_adjust6, nullptr); } TEST_F(MindDataTestPipeline, TestRandomCropSuccess) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomCropSuccess."; // Create an VOC Dataset std::string folder_path = datasets_root_path_ + "/testVOC2012_2"; std::shared_ptr ds = VOC(folder_path, "Detection", "train", {}, true, SequentialSampler(0, 10)); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops // Testing siez of size vector is 1 std::shared_ptr random_crop(new vision::RandomCrop({20})); EXPECT_NE(random_crop, nullptr); // Testing siez of size vector is 2 std::shared_ptr random_crop1(new vision::RandomCrop({20, 20})); EXPECT_NE(random_crop1, nullptr); // Testing siez of paddiing vector is 1 std::shared_ptr random_crop2(new vision::RandomCrop({20, 20}, {10})); EXPECT_NE(random_crop2, nullptr); // Testing siez of paddiing vector is 2 std::shared_ptr random_crop3(new vision::RandomCrop({20, 20}, {10, 20})); EXPECT_NE(random_crop3, nullptr); // Testing siez of paddiing vector is 2 std::shared_ptr random_crop4(new vision::RandomCrop({20, 20}, {10, 10, 10, 10})); EXPECT_NE(random_crop4, nullptr); // Testing siez of fill_value vector is 1 std::shared_ptr random_crop5(new vision::RandomCrop({20, 20}, {10, 10, 10, 10}, false, {5})); EXPECT_NE(random_crop5, nullptr); // Testing siez of fill_value vector is 3 std::shared_ptr random_crop6(new vision::RandomCrop({20, 20}, {10, 10, 10, 10}, false, {4, 4, 4})); EXPECT_NE(random_crop6, nullptr); // Create a Map operation on ds ds = ds->Map({random_crop, random_crop1, random_crop2, random_crop3, random_crop4, random_crop5, random_crop6}); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; // auto image = row["image"]; // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_EQ(i, 10); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestRandomCropFail) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomCropFail with invalid parameters."; // FIXME: For error tests, need to check for failure from CreateIterator execution // Create an VOC Dataset std::string folder_path = datasets_root_path_ + "/testVOC2012_2"; std::shared_ptr ds = VOC(folder_path, "Detection", "train", {}, true, SequentialSampler(0, 3)); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops // Testing the size parameter is negative. std::shared_ptr random_crop(new vision::RandomCrop({-28, 28})); EXPECT_NE(random_crop, nullptr); // Testing the size parameter is None. std::shared_ptr random_crop1(new vision::RandomCrop({})); EXPECT_NE(random_crop1, nullptr); // Testing the size of size vector is 3. std::shared_ptr random_crop2(new vision::RandomCrop({28, 28, 28})); EXPECT_NE(random_crop2, nullptr); // Testing the padding parameter is negative. std::shared_ptr random_crop3(new vision::RandomCrop({28, 28}, {-5})); EXPECT_NE(random_crop3, nullptr); // Testing the size of padding vector is empty. std::shared_ptr random_crop4(new vision::RandomCrop({28, 28}, {})); EXPECT_NE(random_crop4, nullptr); // Testing the size of padding vector is 3. std::shared_ptr random_crop5(new vision::RandomCrop({28, 28}, {5, 5, 5})); EXPECT_NE(random_crop5, nullptr); // Testing the size of padding vector is 5. std::shared_ptr random_crop6(new vision::RandomCrop({28, 28}, {5, 5, 5, 5, 5})); EXPECT_NE(random_crop6, nullptr); // Testing the size of fill_value vector is empty. std::shared_ptr random_crop7(new vision::RandomCrop({28, 28}, {0, 0, 0, 0}, false, {})); EXPECT_NE(random_crop7, nullptr); // Testing the size of fill_value vector is 2. std::shared_ptr random_crop8(new vision::RandomCrop({28, 28}, {0, 0, 0, 0}, false, {0, 0})); EXPECT_NE(random_crop8, nullptr); // Testing the size of fill_value vector is 4. std::shared_ptr random_crop9(new vision::RandomCrop({28, 28}, {0, 0, 0, 0}, false, {0, 0, 0, 0})); EXPECT_NE(random_crop9, nullptr); } TEST_F(MindDataTestPipeline, TestRandomCropWithBboxSuccess) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomCropWithBboxSuccess."; // Create an VOC Dataset std::string folder_path = datasets_root_path_ + "/testVOC2012_2"; std::shared_ptr ds = VOC(folder_path, "Detection", "train", {}, true, SequentialSampler(0, 3)); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr random_crop(new mindspore::dataset::vision::RandomCropWithBBox({128, 128})); EXPECT_NE(random_crop, nullptr); // Create a Map operation on ds ds = ds->Map({random_crop}, {"image", "bbox"}, {"image", "bbox"}, {"image", "bbox"}); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; // auto image = row["image"]; // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); // EXPECT_EQ(image->shape()[0], 128); // EXPECT_EQ(image->shape()[1], 128); iter->GetNextRow(&row); } EXPECT_EQ(i, 3); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestRandomCropWithBboxFail) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomCropWithBboxFail with invalid parameters."; // FIXME: For error tests, need to check for failure from CreateIterator execution // Create an VOC Dataset std::string folder_path = datasets_root_path_ + "/testVOC2012_2"; std::shared_ptr ds = VOC(folder_path, "Detection", "train", {}, true, SequentialSampler(0, 3)); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops // The size parameter is negative. std::shared_ptr random_crop0(new vision::RandomCropWithBBox({-10})); EXPECT_NE(random_crop0, nullptr); // The parameter in the padding vector is negative. std::shared_ptr random_crop1(new vision::RandomCropWithBBox({10, 10}, {-2, 2, 2, 2})); EXPECT_NE(random_crop1, nullptr); // The size container is empty. std::shared_ptr random_crop2(new vision::RandomCropWithBBox({})); EXPECT_NE(random_crop2, nullptr); // The size of the size container is too large. std::shared_ptr random_crop3(new vision::RandomCropWithBBox({10, 10, 10})); EXPECT_NE(random_crop3, nullptr); // The padding container is empty. std::shared_ptr random_crop4(new vision::RandomCropWithBBox({10, 10}, {})); EXPECT_NE(random_crop4, nullptr); // The size of the padding container is too large. std::shared_ptr random_crop5(new vision::RandomCropWithBBox({10, 10}, {5, 5, 5, 5, 5})); EXPECT_NE(random_crop5, nullptr); // The fill_value container is empty. std::shared_ptr random_crop6(new vision::RandomCropWithBBox({10, 10}, {5, 5, 5, 5}, false, {})); EXPECT_NE(random_crop6, nullptr); // The size of the fill_value container is too large. std::shared_ptr random_crop7(new vision::RandomCropWithBBox({10, 10}, {5, 5, 5, 5}, false, {3, 3, 3, 3})); EXPECT_NE(random_crop7, nullptr); } TEST_F(MindDataTestPipeline, TestRandomHorizontalFlipFail) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomHorizontalFlipFail with invalid parameters."; // FIXME: For error tests, need to check for failure from CreateIterator execution // Create object for the tensor op // Invalid negative input std::shared_ptr random_horizontal_flip_op = std::make_shared(-0.5); EXPECT_NE(random_horizontal_flip_op, nullptr); // Invalid >1 input random_horizontal_flip_op = std::make_shared(2); EXPECT_NE(random_horizontal_flip_op, nullptr); } TEST_F(MindDataTestPipeline, TestRandomHorizontalFlipWithBBoxSuccess) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomHorizontalFlipWithBBoxSuccess."; // Create an VOC Dataset std::string folder_path = datasets_root_path_ + "/testVOC2012_2"; std::shared_ptr ds = VOC(folder_path, "Detection", "train", {}, true, SequentialSampler(0, 3)); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr random_horizontal_flip_op = std::make_shared(0.5); EXPECT_NE(random_horizontal_flip_op, nullptr); // Create a Map operation on ds ds = ds->Map({random_horizontal_flip_op}, {"image", "bbox"}, {"image", "bbox"}, {"image", "bbox"}); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; // auto image = row["image"]; // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_EQ(i, 3); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestRandomHorizontalFlipWithBBoxFail) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomHorizontalFlipWithBBoxFail with invalid parameters."; // FIXME: For error tests, need to check for failure from CreateIterator execution // Create an VOC Dataset std::string folder_path = datasets_root_path_ + "/testVOC2012_2"; std::shared_ptr ds = VOC(folder_path, "Detection", "train", {}, true, SequentialSampler(0, 3)); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops // Incorrect prob parameter. std::shared_ptr random_horizontal_flip_op = std::make_shared(-1.0); EXPECT_NE(random_horizontal_flip_op, nullptr); // Incorrect prob parameter. std::shared_ptr random_horizontal_flip_op1 = std::make_shared(2.0); EXPECT_NE(random_horizontal_flip_op1, nullptr); } TEST_F(MindDataTestPipeline, TestRandomHorizontalAndVerticalFlip) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomHorizontalAndVerticalFlip for horizontal and vertical flips."; // Create an ImageFolder Dataset std::string folder_path = datasets_root_path_ + "/testPK/data/"; std::shared_ptr ds = ImageFolder(folder_path, true, RandomSampler(false, 10)); EXPECT_NE(ds, nullptr); // Create a Repeat operation on ds int32_t repeat_num = 2; ds = ds->Repeat(repeat_num); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr random_vertical_flip_op = std::make_shared(0.75); EXPECT_NE(random_vertical_flip_op, nullptr); std::shared_ptr random_horizontal_flip_op = std::make_shared(0.5); EXPECT_NE(random_horizontal_flip_op, nullptr); // Create a Map operation on ds ds = ds->Map({random_vertical_flip_op, random_horizontal_flip_op}); EXPECT_NE(ds, nullptr); // Create a Batch operation on ds int32_t batch_size = 1; ds = ds->Batch(batch_size); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; // auto image = row["image"]; // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_EQ(i, 20); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestRandomPosterizeFail) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomPosterizeFail with invalid parameters."; // FIXME: For error tests, need to check for failure from CreateIterator execution // Create objects for the tensor ops // Invalid max > 8 std::shared_ptr posterize1(new vision::RandomPosterize({1, 9})); EXPECT_NE(posterize1, nullptr); // Invalid min < 1 std::shared_ptr posterize2(new vision::RandomPosterize({0, 8})); EXPECT_NE(posterize2, nullptr); // min > max std::shared_ptr posterize3(new vision::RandomPosterize({8, 1})); EXPECT_NE(posterize3, nullptr); // empty //std::shared_ptr posterize4(new vision::RandomPosterize({})); // EXPECT_NE(posterize4, nullptr); } TEST_F(MindDataTestPipeline, TestRandomPosterizeSuccess1) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomPosterizeSuccess1 with non-default parameters."; // Create an ImageFolder Dataset std::string folder_path = datasets_root_path_ + "/testPK/data/"; std::shared_ptr ds = ImageFolder(folder_path, true, RandomSampler(false, 10)); EXPECT_NE(ds, nullptr); // Create a Repeat operation on ds int32_t repeat_num = 2; ds = ds->Repeat(repeat_num); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr posterize(new vision::RandomPosterize({1, 4})); EXPECT_NE(posterize, nullptr); // Create a Map operation on ds ds = ds->Map({posterize}); EXPECT_NE(ds, nullptr); // Create a Batch operation on ds int32_t batch_size = 1; ds = ds->Batch(batch_size); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; // auto image = row["image"]; // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_EQ(i, 20); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestRandomPosterizeSuccess2) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomPosterizeSuccess2 with default parameters."; // Create an ImageFolder Dataset std::string folder_path = datasets_root_path_ + "/testPK/data/"; std::shared_ptr ds = ImageFolder(folder_path, true, RandomSampler(false, 10)); EXPECT_NE(ds, nullptr); // Create a Repeat operation on ds int32_t repeat_num = 2; ds = ds->Repeat(repeat_num); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr posterize(new vision::RandomPosterize()); EXPECT_NE(posterize, nullptr); // Create a Map operation on ds ds = ds->Map({posterize}); EXPECT_NE(ds, nullptr); // Create a Batch operation on ds int32_t batch_size = 1; ds = ds->Batch(batch_size); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; // auto image = row["image"]; // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_EQ(i, 20); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestRandomResizeSuccess1) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomResizeSuccess1 with single integer input."; // Create an ImageFolder Dataset std::string folder_path = datasets_root_path_ + "/testPK/data/"; std::shared_ptr ds = ImageFolder(folder_path, true, RandomSampler(false, 5)); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr random_resize(new vision::RandomResize({66})); EXPECT_NE(random_resize, nullptr); // Create a Map operation on ds ds = ds->Map({random_resize}, {"image"}); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; // auto image = row["image"]; // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); // EXPECT_EQ(image->shape()[0] == 66, true); iter->GetNextRow(&row); } EXPECT_EQ(i, 5); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestRandomResizeSuccess2) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomResizeSuccess2 with (height, width) input."; // Create an ImageFolder Dataset std::string folder_path = datasets_root_path_ + "/testPK/data/"; std::shared_ptr ds = ImageFolder(folder_path, true, RandomSampler(false, 3)); EXPECT_NE(ds, nullptr); // Create a Repeat operation on ds int32_t repeat_num = 2; ds = ds->Repeat(repeat_num); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr random_resize(new vision::RandomResize({66, 77})); EXPECT_NE(random_resize, nullptr); // Create a Map operation on ds ds = ds->Map({random_resize}, {"image"}); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; // auto image = row["image"]; // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); // EXPECT_EQ(image->shape()[0] == 66 && image->shape()[1] == 77, true); iter->GetNextRow(&row); } EXPECT_EQ(i, 6); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestRandomResizeFail) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomResizeFail incorrect size."; // FIXME: For error tests, need to check for failure from CreateIterator execution // RandomResize : size must only contain positive integers std::shared_ptr random_resize1(new vision::RandomResize({-66, 77})); EXPECT_NE(random_resize1, nullptr); // RandomResize : size must only contain positive integers std::shared_ptr random_resize2(new vision::RandomResize({0, 77})); EXPECT_NE(random_resize2, nullptr); // RandomResize : size must be a vector of one or two values std::shared_ptr random_resize3(new vision::RandomResize({1, 2, 3})); EXPECT_NE(random_resize3, nullptr); // RandomResize : size must be a vector of one or two values std::shared_ptr random_resize4(new vision::RandomResize({})); EXPECT_NE(random_resize4, nullptr); } TEST_F(MindDataTestPipeline, TestRandomResizeWithBBoxSuccess1) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomResizeWithBBoxSuccess1 with single integer input."; // Create an VOC Dataset std::string folder_path = datasets_root_path_ + "/testVOC2012_2"; std::shared_ptr ds = VOC(folder_path, "Detection", "train", {}, true, SequentialSampler(0, 3)); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr random_resize(new vision::RandomResizeWithBBox({88})); EXPECT_NE(random_resize, nullptr); // Create a Map operation on ds ds = ds->Map({random_resize}, {"image", "bbox"}); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; // auto image = row["image"]; // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); // EXPECT_EQ(image->shape()[0] == 88, true); iter->GetNextRow(&row); } EXPECT_EQ(i, 3); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestRandomResizeWithBBoxSuccess2) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomResizeWithBBoxSuccess2 with (height, width) input."; // Create an VOC Dataset std::string folder_path = datasets_root_path_ + "/testVOC2012_2"; std::shared_ptr ds = VOC(folder_path, "Detection", "train", {}, true, SequentialSampler(0, 4)); EXPECT_NE(ds, nullptr); // Create a Repeat operation on ds int32_t repeat_num = 2; ds = ds->Repeat(repeat_num); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr random_resize(new vision::RandomResizeWithBBox({88, 99})); EXPECT_NE(random_resize, nullptr); // Create a Map operation on ds ds = ds->Map({random_resize}, {"image", "bbox"}); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; // auto image = row["image"]; // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); // EXPECT_EQ(image->shape()[0] == 88 && image->shape()[1] == 99, true); iter->GetNextRow(&row); } EXPECT_EQ(i, 8); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestRandomResizeWithBBoxFail) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomResizeWithBBoxFail incorrect size."; // FIXME: For error tests, need to check for failure from CreateIterator execution // RandomResizeWithBBox : size must only contain positive integers std::shared_ptr random_resize_with_bbox1(new vision::RandomResizeWithBBox({-66, 77})); EXPECT_NE(random_resize_with_bbox1, nullptr); // RandomResizeWithBBox : size must be a vector of one or two values std::shared_ptr random_resize_with_bbox2(new vision::RandomResizeWithBBox({1, 2, 3})); EXPECT_NE(random_resize_with_bbox2, nullptr); // RandomResizeWithBBox : size must be a vector of one or two values std::shared_ptr random_resize_with_bbox3(new vision::RandomResizeWithBBox({})); EXPECT_NE(random_resize_with_bbox3, nullptr); } TEST_F(MindDataTestPipeline, TestRandomResizedCropSuccess1) { // Testing RandomResizedCrop with default values // Create a Cifar10 Dataset std::string folder_path = datasets_root_path_ + "/testCifar10Data/"; std::shared_ptr ds = Cifar10(folder_path, "all", RandomSampler(false, 10)); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr random_resized_crop(new vision::RandomResizedCrop({5})); EXPECT_NE(random_resized_crop, nullptr); // Create a Map operation on ds ds = ds->Map({random_resized_crop}, {"image"}); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; // auto image = row["image"]; // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); // EXPECT_EQ(image->shape()[0] == 5 && image->shape()[1] == 5, true); iter->GetNextRow(&row); } EXPECT_EQ(i, 10); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestRandomResizedCropSuccess2) { // Testing RandomResizedCrop with non-default values // Create a Cifar10 Dataset std::string folder_path = datasets_root_path_ + "/testCifar10Data/"; std::shared_ptr ds = Cifar10(folder_path, "all", RandomSampler(false, 10)); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr random_resized_crop(new vision::RandomResizedCrop({5, 10}, {0.25, 0.75}, {0.5, 1.25}, mindspore::dataset::InterpolationMode::kArea, 20)); EXPECT_NE(random_resized_crop, nullptr); // Create a Map operation on ds ds = ds->Map({random_resized_crop}, {"image"}); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; // auto image = row["image"]; // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); // EXPECT_EQ(image->shape()[0] == 5 && image->shape()[1] == 10, true); iter->GetNextRow(&row); } EXPECT_EQ(i, 10); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestRandomResizedCropFail1) { // This should fail because size has negative value // Create a Cifar10 Dataset std::string folder_path = datasets_root_path_ + "/testCifar10Data/"; std::shared_ptr ds = Cifar10(folder_path, "all", RandomSampler(false, 10)); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr random_resized_crop(new vision::RandomResizedCrop({5, -10})); EXPECT_NE(random_resized_crop, nullptr); // Create a Map operation on ds ds = ds->Map({random_resized_crop}); EXPECT_NE(ds, nullptr); std::shared_ptr iter = ds->CreateIterator(); // Expect failure: Invalid RandomResizedCrop input EXPECT_EQ(iter, nullptr); } TEST_F(MindDataTestPipeline, TestRandomResizedCropFail2) { // This should fail because scale isn't in {min, max} format // Create a Cifar10 Dataset std::string folder_path = datasets_root_path_ + "/testCifar10Data/"; std::shared_ptr ds = Cifar10(folder_path, "all", RandomSampler(false, 10)); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr random_resized_crop(new vision::RandomResizedCrop({5, 10}, {4, 3})); EXPECT_NE(random_resized_crop, nullptr); // Create a Map operation on ds ds = ds->Map({random_resized_crop}); EXPECT_NE(ds, nullptr); std::shared_ptr iter = ds->CreateIterator(); // Expect failure: Invalid RandomResizedCrop input EXPECT_EQ(iter, nullptr); } TEST_F(MindDataTestPipeline, TestRandomResizedCropFail3) { // This should fail because ratio isn't in {min, max} format // Create a Cifar10 Dataset std::string folder_path = datasets_root_path_ + "/testCifar10Data/"; std::shared_ptr ds = Cifar10(folder_path, "all", RandomSampler(false, 10)); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr random_resized_crop(new vision::RandomResizedCrop({5, 10}, {4, 5}, {7, 6})); EXPECT_NE(random_resized_crop, nullptr); // Create a Map operation on ds ds = ds->Map({random_resized_crop}); EXPECT_NE(ds, nullptr); std::shared_ptr iter = ds->CreateIterator(); // Expect failure: Invalid RandomResizedCrop input EXPECT_EQ(iter, nullptr); } TEST_F(MindDataTestPipeline, TestRandomResizedCropFail4) { // This should fail because scale has a size of more than 2 // Create a Cifar10 Dataset std::string folder_path = datasets_root_path_ + "/testCifar10Data/"; std::shared_ptr ds = Cifar10(folder_path, "all", RandomSampler(false, 10)); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr random_resized_crop(new vision::RandomResizedCrop({5, 10, 20}, {4, 5}, {7, 6})); EXPECT_NE(random_resized_crop, nullptr); // Create a Map operation on ds ds = ds->Map({random_resized_crop}); EXPECT_NE(ds, nullptr); std::shared_ptr iter = ds->CreateIterator(); // Expect failure: Invalid RandomResizedCrop input EXPECT_EQ(iter, nullptr); } TEST_F(MindDataTestPipeline, TestRandomResizedCropWithBBoxSuccess1) { // Testing RandomResizedCropWithBBox with default values // Create an VOC Dataset std::string folder_path = datasets_root_path_ + "/testVOC2012_2"; std::shared_ptr ds = VOC(folder_path, "Detection", "train", {}, true, SequentialSampler(0, 4)); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr random_resized_crop(new vision::RandomResizedCropWithBBox({5})); EXPECT_NE(random_resized_crop, nullptr); // Create a Map operation on ds ds = ds->Map({random_resized_crop}, {"image", "bbox"}); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; // auto image = row["image"]; // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); // EXPECT_EQ(image->shape()[0] == 5 && image->shape()[1] == 5, true); iter->GetNextRow(&row); } EXPECT_EQ(i, 4); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestRandomResizedCropWithBBoxSuccess2) { // Testing RandomResizedCropWithBBox with non-default values // Create an VOC Dataset std::string folder_path = datasets_root_path_ + "/testVOC2012_2"; std::shared_ptr ds = VOC(folder_path, "Detection", "train", {}, true, SequentialSampler(0, 4)); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr random_resized_crop(new vision::RandomResizedCropWithBBox( {5, 10}, {0.25, 0.75}, {0.5, 1.25}, mindspore::dataset::InterpolationMode::kArea, 20)); EXPECT_NE(random_resized_crop, nullptr); // Create a Map operation on ds ds = ds->Map({random_resized_crop}, {"image", "bbox"}); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; // auto image = row["image"]; // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); // EXPECT_EQ(image->shape()[0] == 5 && image->shape()[1] == 10, true); iter->GetNextRow(&row); } EXPECT_EQ(i, 4); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestRandomResizedCropWithBBoxFail1) { // FIXME: For error tests, need to check for failure from CreateIterator execution // This should fail because size has negative value // Create a Cifar10 Dataset std::string folder_path = datasets_root_path_ + "/testCifar10Data/"; std::shared_ptr ds = Cifar10(folder_path, "all", RandomSampler(false, 10)); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr random_resized_crop(new vision::RandomResizedCropWithBBox({5, -10})); EXPECT_NE(random_resized_crop, nullptr); } TEST_F(MindDataTestPipeline, TestRandomResizedCropWithBBoxFail2) { // FIXME: For error tests, need to check for failure from CreateIterator execution // This should fail because scale isn't in {min, max} format // Create a Cifar10 Dataset std::string folder_path = datasets_root_path_ + "/testCifar10Data/"; std::shared_ptr ds = Cifar10(folder_path, "all", RandomSampler(false, 10)); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr random_resized_crop(new vision::RandomResizedCropWithBBox({5, 10}, {4, 3})); EXPECT_NE(random_resized_crop, nullptr); } TEST_F(MindDataTestPipeline, TestRandomResizedCropWithBBoxFail3) { // FIXME: For error tests, need to check for failure from CreateIterator execution // This should fail because ratio isn't in {min, max} format // Create a Cifar10 Dataset std::string folder_path = datasets_root_path_ + "/testCifar10Data/"; std::shared_ptr ds = Cifar10(folder_path, "all", RandomSampler(false, 10)); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr random_resized_crop(new vision::RandomResizedCropWithBBox({5, 10}, {4, 5}, {7, 6})); EXPECT_NE(random_resized_crop, nullptr); } TEST_F(MindDataTestPipeline, TestRandomResizedCropWithBBoxFail4) { // FIXME: For error tests, need to check for failure from CreateIterator execution // This should fail because scale has a size of more than 2 // Create a Cifar10 Dataset std::string folder_path = datasets_root_path_ + "/testCifar10Data/"; std::shared_ptr ds = Cifar10(folder_path, "all", RandomSampler(false, 10)); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr random_resized_crop(new vision::RandomResizedCropWithBBox({5, 10, 20}, {4, 5}, {7, 6})); EXPECT_NE(random_resized_crop, nullptr); } TEST_F(MindDataTestPipeline, TestRandomRotation) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomRotation."; // Create an ImageFolder Dataset std::string folder_path = datasets_root_path_ + "/testPK/data/"; std::shared_ptr ds = ImageFolder(folder_path, true, RandomSampler(false, 10)); EXPECT_NE(ds, nullptr); // Create a Repeat operation on ds int32_t repeat_num = 2; ds = ds->Repeat(repeat_num); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops // Testing the size of degrees is 1 std::shared_ptr random_rotation_op(new vision::RandomRotation({180})); EXPECT_NE(random_rotation_op, nullptr); // Testing the size of degrees is 2 std::shared_ptr random_rotation_op1(new vision::RandomRotation({-180, 180})); EXPECT_NE(random_rotation_op1, nullptr); // Testing the size of fill_value is 1 std::shared_ptr random_rotation_op2(new vision::RandomRotation({180}, InterpolationMode::kNearestNeighbour, false, {-1, -1}, {2})); EXPECT_NE(random_rotation_op2, nullptr); // Testing the size of fill_value is 3 std::shared_ptr random_rotation_op3(new vision::RandomRotation({180}, InterpolationMode::kNearestNeighbour, false, {-1, -1}, {2, 2, 2})); EXPECT_NE(random_rotation_op3, nullptr); // Create a Map operation on ds ds = ds->Map({random_rotation_op, random_rotation_op1, random_rotation_op2, random_rotation_op3}); EXPECT_NE(ds, nullptr); // Create a Batch operation on ds int32_t batch_size = 1; ds = ds->Batch(batch_size); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; // auto image = row["image"]; // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_EQ(i, 20); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestRandomRotationFail) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomRotationFail with invalid parameters."; // FIXME: For error tests, need to check for failure from CreateIterator execution // Create an ImageFolder Dataset std::string folder_path = datasets_root_path_ + "/testPK/data/"; std::shared_ptr ds = ImageFolder(folder_path, true, RandomSampler(false, 10)); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops // Testing the size of degrees vector is 0 std::shared_ptr random_rotation_op(new vision::RandomRotation({})); EXPECT_NE(random_rotation_op, nullptr); // Testing the size of degrees vector is 3 std::shared_ptr random_rotation_op1(new vision::RandomRotation({-50.0, 50.0, 100.0})); EXPECT_NE(random_rotation_op1, nullptr); // Test the case where the first column value of degrees is greater than the second column value std::shared_ptr random_rotation_op2(new vision::RandomRotation({50.0, -50.0})); EXPECT_NE(random_rotation_op2, nullptr); // Testing the size of center vector is 1 std::shared_ptr random_rotation_op3(new vision::RandomRotation( {-50.0, 50.0}, mindspore::dataset::InterpolationMode::kNearestNeighbour, false, {-1.0})); EXPECT_NE(random_rotation_op3, nullptr); // Testing the size of center vector is 3 std::shared_ptr random_rotation_op4(new vision::RandomRotation( {-50.0, 50.0}, mindspore::dataset::InterpolationMode::kNearestNeighbour, false, {-1.0, -1.0, -1.0})); EXPECT_NE(random_rotation_op4, nullptr); // Testing the size of fill_value vector is 2 std::shared_ptr random_rotation_op5(new vision::RandomRotation( {-50.0, 50.0}, mindspore::dataset::InterpolationMode::kNearestNeighbour, false, {-1.0, -1.0}, {2, 2})); EXPECT_NE(random_rotation_op5, nullptr); // Testing the size of fill_value vector is 4 std::shared_ptr random_rotation_op6(new vision::RandomRotation( {-50.0, 50.0}, mindspore::dataset::InterpolationMode::kNearestNeighbour, false, {-1.0, -1.0}, {2, 2, 2, 2})); EXPECT_NE(random_rotation_op6, nullptr); } TEST_F(MindDataTestPipeline, TestRandomSelectSubpolicySuccess) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomSelectSubpolicySuccess."; // Create an ImageFolder Dataset std::string folder_path = datasets_root_path_ + "/testPK/data/"; std::shared_ptr ds = ImageFolder(folder_path, true, RandomSampler(false, 7)); EXPECT_NE(ds, nullptr); /* FIXME - Resolve RandomSelectSubpolicy to properly handle TensorTransform input // Create objects for the tensor ops // Valid case: TensorTransform is not null and probability is between (0,1) std::shared_ptr random_select_subpolicy(new vision::RandomSelectSubpolicy( {{{vision::Invert(), 0.5}, {vision::Equalize(), 0.5}}, {{vision::Resize({15, 15}), 1}}})); EXPECT_NE(random_select_subpolicy, nullptr); // Create a Map operation on ds ds = ds->Map({random_select_subpolicy}); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; // auto image = row["image"]; // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_EQ(i, 7); // Manually terminate the pipeline iter->Stop(); */ } TEST_F(MindDataTestPipeline, TestRandomSelectSubpolicyFail) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomSelectSubpolicyFail."; // FIXME: For error tests, need to check for failure from CreateIterator execution /* FIXME - Resolve RandomSelectSubpolicy to properly handle TensorTransform input // RandomSelectSubpolicy : probability of transform must be between 0.0 and 1.0 std::shared_ptr random_select_subpolicy1(new vision::RandomSelectSubpolicy( {{{vision::Invert(), 1.5}, {vision::Equalize(), 0.5}}, {{vision::Resize({15, 15}), 1}}})); EXPECT_NE(random_select_subpolicy1, nullptr); // RandomSelectSubpolicy: policy must not be empty std::shared_ptr random_select_subpolicy2(new vision::RandomSelectSubpolicy({{{vision::Invert(), 0.5}, {vision::Equalize(), 0.5}}, {{nullptr, 1}}})); EXPECT_NE(random_select_subpolicy2, nullptr); // RandomSelectSubpolicy: policy must not be empty std::shared_ptr random_select_subpolicy3(new vision::RandomSelectSubpolicy({})); EXPECT_NE(random_select_subpolicy3, nullptr); // RandomSelectSubpolicy: policy must not be empty std::shared_ptr random_select_subpolicy4(new vision::RandomSelectSubpolicy({{{vision::Invert(), 0.5}, {vision::Equalize(), 0.5}}, {}})); EXPECT_NE(random_select_subpolicy4, nullptr); // RandomSelectSubpolicy: policy must not be empty std::shared_ptr random_select_subpolicy5(new vision::RandomSelectSubpolicy({{{}, {vision::Equalize(), 0.5}}, {{vision::Resize({15, 15}), 1}}})); EXPECT_NE(random_select_subpolicy5, nullptr); */ } TEST_F(MindDataTestPipeline, TestRandomSharpness) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomSharpness."; // Create an ImageFolder Dataset std::string folder_path = datasets_root_path_ + "/testPK/data/"; std::shared_ptr ds = ImageFolder(folder_path, true, RandomSampler(false, 10)); EXPECT_NE(ds, nullptr); // Create a Repeat operation on ds int32_t repeat_num = 2; ds = ds->Repeat(repeat_num); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops // Valid case: Input start degree and end degree std::shared_ptr random_sharpness_op_1(new vision::RandomSharpness({0.4, 2.3})); EXPECT_NE(random_sharpness_op_1, nullptr); // Failure case: Empty degrees vector // // std::shared_ptr random_sharpness_op_2(new vision::RandomSharpness({})); // // EXPECT_NE(random_sharpness_op_2, nullptr); // Valid case: Use default input values std::shared_ptr random_sharpness_op_3(new vision::RandomSharpness()); EXPECT_NE(random_sharpness_op_3, nullptr); // Failure case: Single degree value // FIXME: For error tests, need to check for failure from CreateIterator execution std::shared_ptr random_sharpness_op_4(new vision::RandomSharpness({0.1})); EXPECT_NE(random_sharpness_op_4, nullptr); // Create a Map operation on ds ds = ds->Map({random_sharpness_op_1, random_sharpness_op_3}); EXPECT_NE(ds, nullptr); // Create a Batch operation on ds int32_t batch_size = 1; ds = ds->Batch(batch_size); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; // auto image = row["image"]; // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_EQ(i, 20); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestRandomSolarizeSucess1) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomSolarizeSucess1."; // Create an ImageFolder Dataset std::string folder_path = datasets_root_path_ + "/testPK/data/"; std::shared_ptr ds = ImageFolder(folder_path, true, RandomSampler(false, 10)); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::vector threshold = {10, 100}; std::shared_ptr random_solarize = std::make_shared(threshold); EXPECT_NE(random_solarize, nullptr); // Create a Map operation on ds ds = ds->Map({random_solarize}); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; // auto image = row["image"]; // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_EQ(i, 10); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestRandomSolarizeSucess2) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomSolarizeSuccess2 with default parameters."; // Create an ImageFolder Dataset std::string folder_path = datasets_root_path_ + "/testPK/data/"; std::shared_ptr ds = ImageFolder(folder_path, true, RandomSampler(false, 10)); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr random_solarize = std::make_shared(); EXPECT_NE(random_solarize, nullptr); // Create a Map operation on ds ds = ds->Map({random_solarize}); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; // auto image = row["image"]; // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_EQ(i, 10); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestRandomSolarizeFail) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomSolarizeFail with invalid parameters."; // FIXME: For error tests, need to check for failure from CreateIterator execution std::vector threshold = {13, 1}; std::shared_ptr random_solarize = std::make_shared(threshold); EXPECT_NE(random_solarize, nullptr); threshold = {1, 2, 3}; random_solarize = std::make_shared(threshold); EXPECT_NE(random_solarize, nullptr); threshold = {1}; random_solarize = std::make_shared(threshold); EXPECT_NE(random_solarize, nullptr); threshold = {}; random_solarize = std::make_shared(threshold); EXPECT_NE(random_solarize, nullptr); } TEST_F(MindDataTestPipeline, TestRandomVerticalFlipFail) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomVerticalFlipFail with invalid parameters."; // FIXME: For error tests, need to check for failure from CreateIterator execution // Create object for the tensor op // Invalid negative input std::shared_ptr random_vertical_flip_op = std::make_shared(-0.5); EXPECT_NE(random_vertical_flip_op, nullptr); // Invalid >1 input random_vertical_flip_op = std::make_shared(1.1); EXPECT_NE(random_vertical_flip_op, nullptr); } TEST_F(MindDataTestPipeline, TestResizeFail) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestResize with invalid parameters."; // FIXME: For error tests, need to check for failure from CreateIterator execution // negative resize value std::shared_ptr resize_op1(new mindspore::dataset::vision::Resize({30, -30})); EXPECT_NE(resize_op1, nullptr); // zero resize value std::shared_ptr resize_op2(new mindspore::dataset::vision::Resize({0, 30})); EXPECT_NE(resize_op2, nullptr); // resize with 3 values std::shared_ptr resize_op3(new mindspore::dataset::vision::Resize({30, 20, 10})); EXPECT_NE(resize_op3, nullptr); } TEST_F(MindDataTestPipeline, TestResizeWithBBoxSuccess) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestResizeWithBBoxSuccess."; // Create an VOC Dataset std::string folder_path = datasets_root_path_ + "/testVOC2012_2"; std::shared_ptr ds = VOC(folder_path, "Detection", "train", {}, true, SequentialSampler(0, 3)); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr resize_with_bbox_op(new vision::ResizeWithBBox({30})); EXPECT_NE(resize_with_bbox_op, nullptr); std::shared_ptr resize_with_bbox_op1(new vision::ResizeWithBBox({30, 30})); EXPECT_NE(resize_with_bbox_op1, nullptr); // Create a Map operation on ds ds = ds->Map({resize_with_bbox_op, resize_with_bbox_op1}, {"image", "bbox"}, {"image", "bbox"}, {"image", "bbox"}); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; // auto image = row["image"]; // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_EQ(i, 3); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestResizeWithBBoxFail) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestResizeWithBBoxFail with invalid parameters."; // FIXME: For error tests, need to check for failure from CreateIterator execution // Testing negative resize value std::shared_ptr resize_with_bbox_op(new vision::ResizeWithBBox({10, -10})); EXPECT_NE(resize_with_bbox_op, nullptr); // Testing negative resize value std::shared_ptr resize_with_bbox_op1(new vision::ResizeWithBBox({-10})); EXPECT_NE(resize_with_bbox_op1, nullptr); // Testinig zero resize value std::shared_ptr resize_with_bbox_op2(new vision::ResizeWithBBox({0, 10})); EXPECT_NE(resize_with_bbox_op2, nullptr); // Testing resize with 3 values std::shared_ptr resize_with_bbox_op3(new vision::ResizeWithBBox({10, 10, 10})); EXPECT_NE(resize_with_bbox_op3, nullptr); } TEST_F(MindDataTestPipeline, TestRandomVerticalFlipWithBBoxSuccess) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomVerticalFlipWithBBoxSuccess."; // Create an VOC Dataset std::string folder_path = datasets_root_path_ + "/testVOC2012_2"; std::shared_ptr ds = VOC(folder_path, "Detection", "train", {}, true, SequentialSampler(0, 3)); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr random_vertical_flip_op = std::make_shared(0.4); EXPECT_NE(random_vertical_flip_op, nullptr); // Create a Map operation on ds ds = ds->Map({random_vertical_flip_op}, {"image", "bbox"}, {"image", "bbox"}, {"image", "bbox"}); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; // auto image = row["image"]; // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_EQ(i, 3); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestRandomVerticalFlipWithBBoxFail) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomVerticalFlipWithBBoxFail with invalid parameters."; // FIXME: For error tests, need to check for failure from CreateIterator execution // Create an VOC Dataset std::string folder_path = datasets_root_path_ + "/testVOC2012_2"; std::shared_ptr ds = VOC(folder_path, "Detection", "train", {}, true, SequentialSampler(0, 3)); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops // Incorrect prob parameter. std::shared_ptr random_vertical_flip_op = std::make_shared(-0.5); EXPECT_NE(random_vertical_flip_op, nullptr); // Incorrect prob parameter. std::shared_ptr random_vertical_flip_op1 = std::make_shared(3.0); EXPECT_NE(random_vertical_flip_op1, nullptr); } TEST_F(MindDataTestPipeline, TestResize1) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestResize1 with single integer input."; // Create an ImageFolder Dataset std::string folder_path = datasets_root_path_ + "/testPK/data/"; std::shared_ptr ds = ImageFolder(folder_path, true, RandomSampler(false, 6)); EXPECT_NE(ds, nullptr); // Create a Repeat operation on ds int32_t repeat_num = 4; ds = ds->Repeat(repeat_num); EXPECT_NE(ds, nullptr); // Create resize object with single integer input std::shared_ptr resize_op(new vision::Resize({30})); EXPECT_NE(resize_op, nullptr); // Create a Map operation on ds ds = ds->Map({resize_op}); EXPECT_NE(ds, nullptr); // Create a Batch operation on ds int32_t batch_size = 1; ds = ds->Batch(batch_size); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; // auto image = row["image"]; // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_EQ(i, 24); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestRescaleSucess1) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRescaleSucess1."; // Create an ImageFolder Dataset std::string folder_path = datasets_root_path_ + "/testPK/data/"; std::shared_ptr ds = ImageFolder(folder_path, true, SequentialSampler(0, 1)); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map row; iter->GetNextRow(&row); auto image = row["image"]; // Create objects for the tensor ops std::shared_ptr rescale(new mindspore::dataset::vision::Rescale(1.0, 0.0)); EXPECT_NE(rescale, nullptr); // Convert to the same type std::shared_ptr type_cast(new transforms::TypeCast("uint8")); EXPECT_NE(type_cast, nullptr); ds = ds->Map({rescale, type_cast}, {"image"}); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter1 = ds->CreateIterator(); EXPECT_NE(iter1, nullptr); // Iterate the dataset and get each row1 std::unordered_map row1; iter1->GetNextRow(&row1); auto image1 = row1["image"]; // EXPECT_EQ(*image, *image1); // Manually terminate the pipeline iter1->Stop(); } TEST_F(MindDataTestPipeline, TestRescaleSucess2) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRescaleSucess2 with different params."; // Create an ImageFolder Dataset std::string folder_path = datasets_root_path_ + "/testPK/data/"; std::shared_ptr ds = ImageFolder(folder_path, true, RandomSampler(false, 1)); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr rescale(new mindspore::dataset::vision::Rescale(1.0 / 255, 1.0)); EXPECT_NE(rescale, nullptr); ds = ds->Map({rescale}, {"image"}); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; // auto image = row["image"]; // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_EQ(i, 1); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestRescaleFail) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRescaleFail with invalid params."; // FIXME: For error tests, need to check for failure from CreateIterator execution // incorrect negative rescale parameter std::shared_ptr rescale(new mindspore::dataset::vision::Rescale(-1.0, 0.0)); EXPECT_NE(rescale, nullptr); } TEST_F(MindDataTestPipeline, TestSoftDvppDecodeRandomCropResizeJpegSuccess1) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestSoftDvppDecodeRandomCropResizeJpegSuccess1 with single integer input."; // Create an ImageFolder Dataset std::string folder_path = datasets_root_path_ + "/testPK/data/"; std::shared_ptr ds = ImageFolder(folder_path, false, RandomSampler(false, 4)); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr soft_dvpp_decode_random_crop_resize_jpeg(new vision::SoftDvppDecodeRandomCropResizeJpeg({500})); EXPECT_NE(soft_dvpp_decode_random_crop_resize_jpeg, nullptr); // Create a Map operation on ds ds = ds->Map({soft_dvpp_decode_random_crop_resize_jpeg}, {"image"}); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; // auto image = row["image"]; // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); // EXPECT_EQ(image->shape()[0] == 500 && image->shape()[1] == 500, true); iter->GetNextRow(&row); } EXPECT_EQ(i, 4); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestSoftDvppDecodeRandomCropResizeJpegSuccess2) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestSoftDvppDecodeRandomCropResizeJpegSuccess2 with (height, width) input."; // Create an ImageFolder Dataset std::string folder_path = datasets_root_path_ + "/testPK/data/"; std::shared_ptr ds = ImageFolder(folder_path, false, RandomSampler(false, 6)); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr soft_dvpp_decode_random_crop_resize_jpeg(new vision::SoftDvppDecodeRandomCropResizeJpeg({500, 600}, {0.25, 0.75}, {0.5, 1.25}, 20)); EXPECT_NE(soft_dvpp_decode_random_crop_resize_jpeg, nullptr); // Create a Map operation on ds ds = ds->Map({soft_dvpp_decode_random_crop_resize_jpeg}, {"image"}); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; // auto image = row["image"]; // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); // EXPECT_EQ(image->shape()[0] == 500 && image->shape()[1] == 600, true); iter->GetNextRow(&row); } EXPECT_EQ(i, 6); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestSoftDvppDecodeRandomCropResizeJpegFail) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestSoftDvppDecodeRandomCropResizeJpegFail with incorrect parameters."; // FIXME: For error tests, need to check for failure from CreateIterator execution // SoftDvppDecodeRandomCropResizeJpeg: size must only contain positive integers auto soft_dvpp_decode_random_crop_resize_jpeg1(new vision::SoftDvppDecodeRandomCropResizeJpeg({-500, 600})); EXPECT_NE(soft_dvpp_decode_random_crop_resize_jpeg1, nullptr); // SoftDvppDecodeRandomCropResizeJpeg: size must only contain positive integers auto soft_dvpp_decode_random_crop_resize_jpeg2(new vision::SoftDvppDecodeRandomCropResizeJpeg({-500})); EXPECT_NE(soft_dvpp_decode_random_crop_resize_jpeg2, nullptr); // SoftDvppDecodeRandomCropResizeJpeg: size must be a vector of one or two values auto soft_dvpp_decode_random_crop_resize_jpeg3(new vision::SoftDvppDecodeRandomCropResizeJpeg({500, 600, 700})); EXPECT_NE(soft_dvpp_decode_random_crop_resize_jpeg3, nullptr); // SoftDvppDecodeRandomCropResizeJpeg: scale must be greater than or equal to 0 auto soft_dvpp_decode_random_crop_resize_jpeg4(new vision::SoftDvppDecodeRandomCropResizeJpeg({500}, {-0.1, 0.9})); EXPECT_NE(soft_dvpp_decode_random_crop_resize_jpeg4, nullptr); // SoftDvppDecodeRandomCropResizeJpeg: scale must be in the format of (min, max) auto soft_dvpp_decode_random_crop_resize_jpeg5(new vision::SoftDvppDecodeRandomCropResizeJpeg({500}, {0.6, 0.2})); EXPECT_NE(soft_dvpp_decode_random_crop_resize_jpeg5, nullptr); // SoftDvppDecodeRandomCropResizeJpeg: scale must be a vector of two values auto soft_dvpp_decode_random_crop_resize_jpeg6(new vision::SoftDvppDecodeRandomCropResizeJpeg({500}, {0.5, 0.6, 0.7})); EXPECT_NE(soft_dvpp_decode_random_crop_resize_jpeg6, nullptr); // SoftDvppDecodeRandomCropResizeJpeg: ratio must be greater than or equal to 0 auto soft_dvpp_decode_random_crop_resize_jpeg7(new vision::SoftDvppDecodeRandomCropResizeJpeg({500}, {0.5, 0.9}, {-0.2, 0.4})); EXPECT_NE(soft_dvpp_decode_random_crop_resize_jpeg7, nullptr); // SoftDvppDecodeRandomCropResizeJpeg: ratio must be in the format of (min, max) auto soft_dvpp_decode_random_crop_resize_jpeg8(new vision::SoftDvppDecodeRandomCropResizeJpeg({500}, {0.5, 0.9}, {0.4, 0.2})); EXPECT_NE(soft_dvpp_decode_random_crop_resize_jpeg8, nullptr); // SoftDvppDecodeRandomCropResizeJpeg: ratio must be a vector of two values auto soft_dvpp_decode_random_crop_resize_jpeg9(new vision::SoftDvppDecodeRandomCropResizeJpeg({500}, {0.5, 0.9}, {0.1, 0.2, 0.3})); EXPECT_NE(soft_dvpp_decode_random_crop_resize_jpeg9, nullptr); // SoftDvppDecodeRandomCropResizeJpeg: max_attempts must be greater than or equal to 1 auto soft_dvpp_decode_random_crop_resize_jpeg10(new vision::SoftDvppDecodeRandomCropResizeJpeg({500}, {0.5, 0.9}, {0.1, 0.2}, 0)); EXPECT_NE(soft_dvpp_decode_random_crop_resize_jpeg10, nullptr); } TEST_F(MindDataTestPipeline, TestSoftDvppDecodeResizeJpegSuccess1) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestSoftDvppDecodeResizeJpegSuccess1 with single integer input."; // Create an ImageFolder Dataset std::string folder_path = datasets_root_path_ + "/testPK/data/"; std::shared_ptr ds = ImageFolder(folder_path, false, RandomSampler(false, 4)); EXPECT_NE(ds, nullptr); // Create a Repeat operation on ds int32_t repeat_num = 3; ds = ds->Repeat(repeat_num); EXPECT_NE(ds, nullptr); // Create SoftDvppDecodeResizeJpeg object with single integer input std::shared_ptr soft_dvpp_decode_resize_jpeg_op(new vision::SoftDvppDecodeResizeJpeg({1134})); EXPECT_NE(soft_dvpp_decode_resize_jpeg_op, nullptr); // Create a Map operation on ds ds = ds->Map({soft_dvpp_decode_resize_jpeg_op}); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; // auto image = row["image"]; // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_EQ(i, 12); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestSoftDvppDecodeResizeJpegSuccess2) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestSoftDvppDecodeResizeJpegSuccess2 with (height, width) input."; // Create an ImageFolder Dataset std::string folder_path = datasets_root_path_ + "/testPK/data/"; std::shared_ptr ds = ImageFolder(folder_path, false, RandomSampler(false, 2)); EXPECT_NE(ds, nullptr); // Create SoftDvppDecodeResizeJpeg object with single integer input std::shared_ptr soft_dvpp_decode_resize_jpeg_op(new vision::SoftDvppDecodeResizeJpeg({100, 200})); EXPECT_NE(soft_dvpp_decode_resize_jpeg_op, nullptr); // Create a Map operation on ds ds = ds->Map({soft_dvpp_decode_resize_jpeg_op}); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; // auto image = row["image"]; // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_EQ(i, 2); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestSoftDvppDecodeResizeJpegFail) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestSoftDvppDecodeResizeJpegFail with incorrect size."; // FIXME: For error tests, need to check for failure from CreateIterator execution // CSoftDvppDecodeResizeJpeg: size must be a vector of one or two values std::shared_ptr soft_dvpp_decode_resize_jpeg_op1(new vision::SoftDvppDecodeResizeJpeg({})); EXPECT_NE(soft_dvpp_decode_resize_jpeg_op1, nullptr); // SoftDvppDecodeResizeJpeg: size must be a vector of one or two values std::shared_ptr soft_dvpp_decode_resize_jpeg_op2(new vision::SoftDvppDecodeResizeJpeg({1, 2, 3})); EXPECT_NE(soft_dvpp_decode_resize_jpeg_op2, nullptr); // SoftDvppDecodeResizeJpeg: size must only contain positive integers std::shared_ptr soft_dvpp_decode_resize_jpeg_op3(new vision::SoftDvppDecodeResizeJpeg({20, -20})); EXPECT_NE(soft_dvpp_decode_resize_jpeg_op3, nullptr); // SoftDvppDecodeResizeJpeg: size must only contain positive integers std::shared_ptr soft_dvpp_decode_resize_jpeg_op4(new vision::SoftDvppDecodeResizeJpeg({0})); EXPECT_NE(soft_dvpp_decode_resize_jpeg_op4, nullptr); } TEST_F(MindDataTestPipeline, TestUniformAugmentFail1) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestUniformAugmentFail1 with invalid num_ops parameter."; // FIXME: For error tests, need to check for failure from CreateIterator execution /* // Create objects for the tensor ops std::shared_ptr random_crop_op(new vision::RandomCrop({28, 28})); EXPECT_NE(random_crop_op, nullptr); std::shared_ptr center_crop_op(new vision::CenterCrop({16, 16})); EXPECT_NE(center_crop_op, nullptr); // FIXME: For error tests, need to check for failure from CreateIterator execution // UniformAug: num_ops must be greater than 0 std::shared_ptr uniform_aug_op1(new vision::UniformAugment({random_crop_op, center_crop_op}, 0)); EXPECT_EQ(uniform_aug_op1, nullptr); // UniformAug: num_ops must be greater than 0 std::shared_ptr uniform_aug_op2(new vision::UniformAugment({random_crop_op, center_crop_op}, -1)); EXPECT_EQ(uniform_aug_op2, nullptr); // UniformAug: num_ops is greater than transforms size std::shared_ptr uniform_aug_op3(new vision::UniformAugment({random_crop_op, center_crop_op}, 3)); EXPECT_EQ(uniform_aug_op3, nullptr); */ } TEST_F(MindDataTestPipeline, TestUniformAugmentFail2) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestUniformAugmentFail2 with invalid transform."; // FIXME: For error tests, need to check for failure from CreateIterator execution /* // UniformAug: transform ops must not be null std::shared_ptr uniform_aug_op1(new vision::UniformAugment({vision::RandomCrop({-28})}, 1)); EXPECT_NE(uniform_aug_op1, nullptr); // UniformAug: transform ops must not be null std::shared_ptr uniform_aug_op2(new vision::UniformAugment({vision::RandomCrop({28}), nullptr}, 2)); EXPECT_NE(uniform_aug_op2, nullptr); // UniformAug: transform list must not be empty std::shared_ptr uniform_aug_op3(new vision::UniformAugment({}, 1)); EXPECT_NE(uniform_aug_op3, nullptr); */ } TEST_F(MindDataTestPipeline, TestUniformAugWithOps) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestUniformAugWithOps."; // Create a Mnist Dataset std::string folder_path = datasets_root_path_ + "/testMnistData/"; std::shared_ptr ds = Mnist(folder_path, "all", RandomSampler(false, 20)); EXPECT_NE(ds, nullptr); // Create a Repeat operation on ds int32_t repeat_num = 1; ds = ds->Repeat(repeat_num); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr resize_op(new vision::Resize({30, 30})); EXPECT_NE(resize_op, nullptr); std::shared_ptr random_crop_op(new vision::RandomCrop({28, 28})); EXPECT_NE(random_crop_op, nullptr); std::shared_ptr center_crop_op(new vision::CenterCrop({16, 16})); EXPECT_NE(center_crop_op, nullptr); std::shared_ptr uniform_aug_op(new vision::UniformAugment({random_crop_op, center_crop_op}, 2)); EXPECT_NE(uniform_aug_op, nullptr); // Create a Map operation on ds ds = ds->Map({resize_op, uniform_aug_op}); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; // auto image = row["image"]; // MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_EQ(i, 20); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestVisionOperationName) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestVisionOperationName."; std::string correct_name; // Create object for the tensor op, and check the name /* FIXME - Update and move test to IR level std::shared_ptr random_vertical_flip_op = vision::RandomVerticalFlip(0.5); correct_name = "RandomVerticalFlip"; EXPECT_EQ(correct_name, random_vertical_flip_op->Name()); // Create object for the tensor op, and check the name std::shared_ptr softDvpp_decode_resize_jpeg_op = vision::SoftDvppDecodeResizeJpeg({1, 1}); correct_name = "SoftDvppDecodeResizeJpeg"; EXPECT_EQ(correct_name, softDvpp_decode_resize_jpeg_op->Name()); */ }