# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.nn as nn from mindspore import Tensor, context from mindspore.nn import TrainOneStepCell, WithLossCell context.set_context(enable_sparse=True, mode=context.GRAPH_MODE) class NetWithEmbeddingLookUp(nn.Cell): def __init__(self, vocab_size, embedding_size, target="CPU"): super(NetWithEmbeddingLookUp, self).__init__() self.embedding_lookup = \ nn.EmbeddingLookup(vocab_size=vocab_size, embedding_size=embedding_size, param_init="ones", target=target) def construct(self, indices): out = self.embedding_lookup(indices) return out @pytest.mark.level0 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_sit_embedding_lookup_net(): indices = Tensor(np.array([0, 1, 2]).astype(np.int32)) label = Tensor(np.random.randn(3, 8).astype(np.float32)) net1 = NetWithEmbeddingLookUp(vocab_size=8, embedding_size=8, target="CPU") loss = nn.SoftmaxCrossEntropyWithLogits(reduction="mean") optimizer1 = nn.Adam(params=net1.trainable_params(), learning_rate=0.1) optimizer1.unique = True train_network1 = TrainOneStepCell(WithLossCell(net1, loss), optimizer1) train_network1.set_train() out1 = train_network1(indices, label) net2 = NetWithEmbeddingLookUp(vocab_size=8, embedding_size=8, target="CPU") optimizer2 = nn.Adam(params=net2.trainable_params(), learning_rate=0.1) optimizer2.unique = False optimizer2.target = "CPU" train_network2 = TrainOneStepCell(WithLossCell(net2, loss), optimizer2) train_network2.set_train() out2 = train_network2(indices, label) assert np.allclose(out1.asnumpy(), out2.asnumpy(), 0.001, 0.001)