# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import mindspore.nn as nn import pytest from mindspore import context from mindspore import Tensor, Parameter from mindspore.nn.wrap.cell_wrapper import WithLossCell from mindspore.train.loss_scale_manager import FixedLossScaleManager, DynamicLossScaleManager from mindspore.nn.wrap.loss_scale import TrainOneStepWithLossScaleCell from mindspore.ops import operations as P from mindspore.nn.optim import Momentum from mindspore.ops import functional as F from mindspore.common import dtype as mstype from mindspore.train import Model from ....dataset_mock import MindData from mindspore.nn.optim import Lamb from mindspore.ops._utils import _get_broadcast_shape from mindspore.ops.primitive import Primitive, PrimitiveWithInfer, prim_attr_register from mindspore.ops._grad.grad_base import bprop_getters from mindspore.ops._grad.grad_math_ops import binop_grad_common context.set_context(mode=context.GRAPH_MODE) class MockNeg(PrimitiveWithInfer): @prim_attr_register def __init__(self): """init MockNeg""" self.init_prim_io_names(inputs=['x'], outputs=['y']) def infer_shape(self, input_x): return input_x def infer_dtype(self, input_x): raise TypeError("InferError") return input_x class MockSub(PrimitiveWithInfer): @prim_attr_register def __init__(self): """init MockSub""" self.init_prim_io_names(inputs=['x', 'y'], outputs=['output']) def infer_shape(self, x_shape, y_shape): return _get_broadcast_shape(x_shape, y_shape) def infer_dtype(self, x_dtype, y_dtype): return x_dtype @bprop_getters.register(MockSub) def get_bprop_mock_sub(self): """Grad definition for `MockSub` operation.""" neg_func = MockNeg() def bprop(x, y, out, dout): return binop_grad_common(x, y, dout, neg_func(dout)) return bprop class Net(nn.Cell): def __init__(self, in_features, out_features): super(Net, self).__init__() self.weight = Parameter(Tensor(np.ones([out_features, in_features]).astype(np.float32)), name="weight") self.bias = Parameter(Tensor(np.ones([out_features]).astype(np.float32)), name="bias") self.matmul = P.MatMul() self.add = P.TensorAdd() def construct(self, input): output = self.add(self.matmul(input, self.weight), self.bias) return output class NetFP16(nn.Cell): def __init__(self, in_features, out_features): super(NetFP16, self).__init__() self.weight = Parameter(Tensor(np.ones([out_features, in_features]).astype(np.float32)), name="weight") self.bias = Parameter(Tensor(np.ones([out_features]).astype(np.float32)), name="bias") self.matmul = P.MatMul() self.add = P.TensorAdd() self.cast = P.Cast() def construct(self, input): output = self.cast(self.add(self.matmul(self.cast(input, mstype.float16), self.cast(self.weight, mstype.float16)), self.cast(self.bias, mstype.float16)), mstype.float32) return output def get_axis(x): shape = F.shape(x) length = F.tuple_len(shape) perm = F.make_range(0, length) return perm class MSELoss(nn.Cell): def __init__(self): super(MSELoss, self).__init__() self.reduce_sum = P.ReduceSum() self.square = P.Square() self.reduce_mean = P.ReduceMean() self.sub = MockSub() def construct(self, data, label): diff = self.sub(data, label) return self.reduce_mean(self.square(diff), get_axis(diff)) class NegCell(nn.Cell): def __init__(self): super(NegCell, self).__init__() self.neg = MockNeg() def construct(self, x): return self.neg(x) class Net3(nn.Cell): def __init__(self): super().__init__() self.tuple = (NegCell(), nn.ReLU()) def construct(self, x): for op in self.tuple: x = op(x) return x def test_op_forward_infererror(): input_np = np.random.randn(2, 3, 4, 5).astype(np.float32) input_me = Tensor(input_np) net = Net3() with pytest.raises(TypeError) as e: net(input_me) class SequenceNet(nn.Cell): def __init__(self): super().__init__() self.seq = nn.SequentialCell([nn.AvgPool2d(3, 1), nn.ReLU(), nn.Flatten()]) def construct(self, x): x = self.seq(x) + bbb return x def test_sequential_resolve_error(): input_np = np.random.randn(2, 3, 4, 5).astype(np.float32) input_me = Tensor(input_np) net = SequenceNet() with pytest.raises(RuntimeError) as e: net(input_me) def test_compile_grad_error(): inputs = Tensor(np.ones([16, 16]).astype(np.float32)) label = Tensor(np.zeros([16, 16]).astype(np.float32)) lr = Tensor(np.ones([1], np.float32) * 0.1) net = NetFP16(16, 16) loss = MSELoss() optimizer = Momentum(net.trainable_params(), learning_rate=lr, momentum=0.9) net_with_loss = WithLossCell(net, loss) scale_manager = DynamicLossScaleManager() update_cell = scale_manager.get_update_cell() train_network = TrainOneStepWithLossScaleCell(net_with_loss, optimizer, scale_update_cell = update_cell) train_network.set_train() with pytest.raises(TypeError) as e: train_network(inputs, label) print (e)