# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context from mindspore import Tensor from mindspore.nn import Cell import mindspore.ops.operations as P class SumOutNet(Cell): def __init__(self): super(SumOutNet, self).__init__() self.square = P.Square() self.sum = P.ReduceSum() def construct(self, x): mul_res = self.square(x) return self.sum(mul_res, (0,)) class SingleOutNet(Cell): def __init__(self): super(SingleOutNet, self).__init__() self.add = P.TensorAdd() self.mul = P.Mul() self.sum = P.ReduceSum() def construct(self, x, y): mul_res = self.mul(x, y) sum_res = self.sum(mul_res, ()) return self.add(sum_res, x) class MultiOutNet(Cell): def __init__(self): super(MultiOutNet, self).__init__() self.add = P.TensorAdd() self.mul = P.Mul() self.sum = P.ReduceSum() def construct(self, x, y): add_res = self.add(x, y) mul_res = self.mul(add_res, add_res) sum_res = self.sum(mul_res, ()) return self.add(add_res, sum_res) def atomic_add_sum_output(): np.random.seed(0) input_x = np.random.normal(0, 1, [2, 3, 4, 3]).astype(np.float32) expect = np.sum(np.square(input_x), axis=(0,)) net = SumOutNet() result = net(Tensor(input_x)) res = np.allclose(expect, result.asnumpy(), rtol=1.e-4, atol=1.e-7, equal_nan=True) assert res def atomic_add_single_output(): np.random.seed(0) input_x = np.random.normal(0, 1, [2, 2, 2, 256]).astype(np.float32) input_y = np.random.normal(0, 1, [2, 2, 2, 256]).astype(np.float32) expect = np.sum(input_x * input_y) + input_x net = SingleOutNet() result = net(Tensor(input_x), Tensor(input_y)) res = np.allclose(expect, result.asnumpy(), rtol=1.e-4, atol=1.e-7, equal_nan=True) assert res def atomic_add_multi_output(): np.random.seed(0) input_x = np.random.normal(0, 1, [2, 2, 2, 256]).astype(np.float32) input_y = np.random.normal(0, 1, [2, 2, 2, 256]).astype(np.float32) expect = np.sum(np.square(input_x + input_y)) + (input_x + input_y) net = MultiOutNet() result = net(Tensor(input_x), Tensor(input_y)) res = np.allclose(expect, result.asnumpy(), rtol=1.e-4, atol=1.e-7, equal_nan=True) assert res @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_atomic_add_sum_output_gpu(): context.set_context(mode=context.GRAPH_MODE, enable_graph_kernel=True, device_target="GPU") atomic_add_sum_output() @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_atomic_add_single_output_gpu(): context.set_context(mode=context.GRAPH_MODE, enable_graph_kernel=True, device_target="GPU") atomic_add_single_output() @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_atomic_add_multi_output_gpu(): context.set_context(mode=context.GRAPH_MODE, enable_graph_kernel=True, device_target="GPU") atomic_add_multi_output()