# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context from mindspore.common.tensor import Tensor from mindspore.ops import operations as P @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_nobroadcast(): context.set_context(mode=context.GRAPH_MODE, device_target='GPU') x1_np = np.random.rand(10, 20).astype(np.float32) x2_np = np.random.rand(10, 20).astype(np.float32) output_ms = P.Minimum()(Tensor(x1_np), Tensor(x2_np)) output_np = np.minimum(x1_np, x2_np) assert np.allclose(output_ms.asnumpy(), output_np) output_ms = P.Maximum()(Tensor(x1_np), Tensor(x2_np)) output_np = np.maximum(x1_np, x2_np) assert np.allclose(output_ms.asnumpy(), output_np) output_ms = P.Greater()(Tensor(x1_np), Tensor(x2_np)) output_np = x1_np > x2_np assert np.allclose(output_ms.asnumpy(), output_np) output_ms = P.Less()(Tensor(x1_np), Tensor(x2_np)) output_np = x1_np < x2_np assert np.allclose(output_ms.asnumpy(), output_np) output_ms = P.Pow()(Tensor(x1_np), Tensor(x2_np)) output_np = np.power(x1_np, x2_np) assert np.allclose(output_ms.asnumpy(), output_np) output_ms = P.RealDiv()(Tensor(x1_np), Tensor(x2_np)) output_np = x1_np / x2_np assert np.allclose(output_ms.asnumpy(), output_np) output_ms = P.Mul()(Tensor(x1_np), Tensor(x2_np)) output_np = x1_np * x2_np assert np.allclose(output_ms.asnumpy(), output_np) output_ms = P.Sub()(Tensor(x1_np), Tensor(x2_np)) output_np = x1_np - x2_np assert np.allclose(output_ms.asnumpy(), output_np) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_broadcast(): context.set_context(mode=context.GRAPH_MODE, device_target='GPU') x1_np = np.random.rand(3, 1, 5, 1).astype(np.float32) x2_np = np.random.rand(1, 4, 1, 6).astype(np.float32) output_ms = P.Minimum()(Tensor(x1_np), Tensor(x2_np)) output_np = np.minimum(x1_np, x2_np) assert np.allclose(output_ms.asnumpy(), output_np) output_ms = P.Maximum()(Tensor(x1_np), Tensor(x2_np)) output_np = np.maximum(x1_np, x2_np) assert np.allclose(output_ms.asnumpy(), output_np) output_ms = P.Greater()(Tensor(x1_np), Tensor(x2_np)) output_np = x1_np > x2_np assert np.allclose(output_ms.asnumpy(), output_np) output_ms = P.Less()(Tensor(x1_np), Tensor(x2_np)) output_np = x1_np < x2_np assert np.allclose(output_ms.asnumpy(), output_np) output_ms = P.Pow()(Tensor(x1_np), Tensor(x2_np)) output_np = np.power(x1_np, x2_np) assert np.allclose(output_ms.asnumpy(), output_np) output_ms = P.RealDiv()(Tensor(x1_np), Tensor(x2_np)) output_np = x1_np / x2_np assert np.allclose(output_ms.asnumpy(), output_np) output_ms = P.Mul()(Tensor(x1_np), Tensor(x2_np)) output_np = x1_np * x2_np assert np.allclose(output_ms.asnumpy(), output_np) output_ms = P.Sub()(Tensor(x1_np), Tensor(x2_np)) output_np = x1_np - x2_np assert np.allclose(output_ms.asnumpy(), output_np) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_broadcast_diff_dims(): context.set_context(mode=context.GRAPH_MODE, device_target='GPU') x1_np = np.random.rand(2).astype(np.float32) x2_np = np.random.rand(2, 1).astype(np.float32) output_ms = P.Minimum()(Tensor(x1_np), Tensor(x2_np)) output_np = np.minimum(x1_np, x2_np) assert np.allclose(output_ms.asnumpy(), output_np) output_ms = P.Maximum()(Tensor(x1_np), Tensor(x2_np)) output_np = np.maximum(x1_np, x2_np) assert np.allclose(output_ms.asnumpy(), output_np) output_ms = P.Greater()(Tensor(x1_np), Tensor(x2_np)) output_np = x1_np > x2_np assert np.allclose(output_ms.asnumpy(), output_np) output_ms = P.Less()(Tensor(x1_np), Tensor(x2_np)) output_np = x1_np < x2_np assert np.allclose(output_ms.asnumpy(), output_np) output_ms = P.Pow()(Tensor(x1_np), Tensor(x2_np)) output_np = np.power(x1_np, x2_np) assert np.allclose(output_ms.asnumpy(), output_np) output_ms = P.RealDiv()(Tensor(x1_np), Tensor(x2_np)) output_np = x1_np / x2_np assert np.allclose(output_ms.asnumpy(), output_np) output_ms = P.Mul()(Tensor(x1_np), Tensor(x2_np)) output_np = x1_np * x2_np assert np.allclose(output_ms.asnumpy(), output_np) output_ms = P.Sub()(Tensor(x1_np), Tensor(x2_np)) output_np = x1_np - x2_np assert np.allclose(output_ms.asnumpy(), output_np)