# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """export checkpoint file into air models""" import argparse import numpy as np from mindspore import Tensor, context, load_checkpoint, export from src.gcn import GCN from src.config import ConfigGCN parser = argparse.ArgumentParser(description="GCN export") parser.add_argument("--device_id", type=int, default=0, help="Device id") parser.add_argument("--ckpt_file", type=str, required=True, help="Checkpoint file path.") parser.add_argument("--dataset", type=str, default="cora", choices=["cora", "citeseer"], help="Dataset.") parser.add_argument("--file_name", type=str, default="gcn", help="output file name.") parser.add_argument("--file_format", type=str, choices=["AIR", "ONNX", "MINDIR"], default="AIR", help="file format") parser.add_argument("--device_target", type=str, default="Ascend", choices=["Ascend", "GPU", "CPU"], help="device target (default: Ascend)") args = parser.parse_args() context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target) if args.device_target == "Ascend": context.set_context(device_id=args.device_id) if __name__ == "__main__": config = ConfigGCN() if args.dataset == "cora": input_dim = 1433 class_num = 7 adj = Tensor(np.zeros((2708, 2708), np.float64)) feature = Tensor(np.zeros((2708, 1433), np.float32)) else: input_dim = 3703 class_num = 6 adj = Tensor(np.zeros((3312, 3312), np.float64)) feature = Tensor(np.zeros((3312, 3703), np.float32)) gcn_net = GCN(config, input_dim, class_num) gcn_net.set_train(False) load_checkpoint(args.ckpt_file, net=gcn_net) gcn_net.add_flags_recursive(fp16=True) export(gcn_net, adj, feature, file_name=args.file_name, file_format=args.file_format)