# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """export mindir.""" import json from os.path import join import argparse from warnings import warn from hparams import hparams, hparams_debug_string from mindspore import context, Tensor from mindspore.train.serialization import load_checkpoint, load_param_into_net, export from wavenet_vocoder import WaveNet from wavenet_vocoder.util import is_mulaw_quantize, is_scalar_input import numpy as np from src.loss import PredictNet parser = argparse.ArgumentParser(description='TTS training') parser.add_argument('--preset', type=str, default='', help='Path of preset parameters (json).') parser.add_argument('--checkpoint_dir', type=str, default='./checkpoints_test', help='Directory where to save model checkpoints [default: checkpoints].') parser.add_argument('--speaker_id', type=str, default='', help=' Use specific speaker of data in case for multi-speaker datasets.') parser.add_argument('--pretrain_ckpt', type=str, default='', help='Pretrained checkpoint path') parser.add_argument('--platform', type=str, default='GPU', choices=('GPU', 'CPU'), help='run platform, support GPU and CPU. Default: GPU') args = parser.parse_args() if __name__ == '__main__': context.set_context(mode=context.GRAPH_MODE, device_target=args.platform, save_graphs=False) speaker_id = int(args.speaker_id) if args.speaker_id != '' else None if args.preset is not None: with open(args.preset) as f: hparams.parse_json(f.read()) assert hparams.name == "wavenet_vocoder" print(hparams_debug_string()) fs = hparams.sample_rate output_json_path = join(args.checkpoint_dir, "hparams.json") with open(output_json_path, "w") as f: json.dump(hparams.values(), f, indent=2) if is_mulaw_quantize(hparams.input_type): if hparams.out_channels != hparams.quantize_channels: raise RuntimeError( "out_channels must equal to quantize_chennels if input_type is 'mulaw-quantize'") if hparams.upsample_conditional_features and hparams.cin_channels < 0: s = "Upsample conv layers were specified while local conditioning disabled. " s += "Notice that upsample conv layers will never be used." warn(s) upsample_params = hparams.upsample_params upsample_params["cin_channels"] = hparams.cin_channels upsample_params["cin_pad"] = hparams.cin_pad model = WaveNet( out_channels=hparams.out_channels, layers=hparams.layers, stacks=hparams.stacks, residual_channels=hparams.residual_channels, gate_channels=hparams.gate_channels, skip_out_channels=hparams.skip_out_channels, cin_channels=hparams.cin_channels, gin_channels=hparams.gin_channels, n_speakers=hparams.n_speakers, dropout=hparams.dropout, kernel_size=hparams.kernel_size, cin_pad=hparams.cin_pad, upsample_conditional_features=hparams.upsample_conditional_features, upsample_params=upsample_params, scalar_input=is_scalar_input(hparams.input_type), output_distribution=hparams.output_distribution, ) Net = PredictNet(model) Net.set_train(False) param_dict = load_checkpoint(args.pretrain_ckpt) load_param_into_net(model, param_dict) print('Successfully loading the pre-trained model') if is_mulaw_quantize(hparams.input_type): x = np.array(np.random.random((2, 256, 10240)), dtype=np.float32) else: x = np.array(np.random.random((2, 1, 10240)), dtype=np.float32) c = np.array(np.random.random((2, 80, 44)), dtype=np.float32) g = np.array([0, 0], dtype=np.int64) export(Net, Tensor(x), Tensor(c), Tensor(g), file_name="WaveNet", file_format='MINDIR')