# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Face attribute eval.""" import os import argparse import numpy as np from mindspore import context from mindspore import Tensor from mindspore.train.serialization import load_checkpoint, load_param_into_net from mindspore.common import dtype as mstype from src.dataset_eval import data_generator_eval from src.config import config from src.FaceAttribute.resnet18 import get_resnet18 devid = int(os.getenv('DEVICE_ID')) context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=False, device_id=devid) def softmax(x, axis=0): return np.exp(x) / np.sum(np.exp(x), axis=axis) def main(args): network = get_resnet18(args) ckpt_path = args.model_path if os.path.isfile(ckpt_path): param_dict = load_checkpoint(ckpt_path) param_dict_new = {} for key, values in param_dict.items(): if key.startswith('moments.'): continue elif key.startswith('network.'): param_dict_new[key[8:]] = values else: param_dict_new[key] = values load_param_into_net(network, param_dict_new) print('-----------------------load model success-----------------------') else: print('-----------------------load model failed-----------------------') network.set_train(False) de_dataloader, steps_per_epoch, _ = data_generator_eval(args) total_data_num_age = 0 total_data_num_gen = 0 total_data_num_mask = 0 age_num = 0 gen_num = 0 mask_num = 0 gen_tp_num = 0 mask_tp_num = 0 gen_fp_num = 0 mask_fp_num = 0 gen_fn_num = 0 mask_fn_num = 0 for step_i, (data, gt_classes) in enumerate(de_dataloader): print('evaluating {}/{} ...'.format(step_i + 1, steps_per_epoch)) data_tensor = Tensor(data, dtype=mstype.float32) fea = network(data_tensor) gt_age, gt_gen, gt_mask = gt_classes[0] age_result, gen_result, mask_result = fea age_result_np = age_result.asnumpy() gen_result_np = gen_result.asnumpy() mask_result_np = mask_result.asnumpy() age_prob = softmax(age_result_np[0].astype(np.float32)).tolist() gen_prob = softmax(gen_result_np[0].astype(np.float32)).tolist() mask_prob = softmax(mask_result_np[0].astype(np.float32)).tolist() age = age_prob.index(max(age_prob)) gen = gen_prob.index(max(gen_prob)) mask = mask_prob.index(max(mask_prob)) if gt_age == age: age_num += 1 if gt_gen == gen: gen_num += 1 if gt_mask == mask: mask_num += 1 if gt_gen == 1 and gen == 1: gen_tp_num += 1 if gt_gen == 0 and gen == 1: gen_fp_num += 1 if gt_gen == 1 and gen == 0: gen_fn_num += 1 if gt_mask == 1 and mask == 1: mask_tp_num += 1 if gt_mask == 0 and mask == 1: mask_fp_num += 1 if gt_mask == 1 and mask == 0: mask_fn_num += 1 if gt_age != -1: total_data_num_age += 1 if gt_gen != -1: total_data_num_gen += 1 if gt_mask != -1: total_data_num_mask += 1 age_accuracy = float(age_num) / float(total_data_num_age) gen_precision = float(gen_tp_num) / (float(gen_tp_num) + float(gen_fp_num)) gen_recall = float(gen_tp_num) / (float(gen_tp_num) + float(gen_fn_num)) gen_accuracy = float(gen_num) / float(total_data_num_gen) gen_f1 = 2. * gen_precision * gen_recall / (gen_precision + gen_recall) mask_precision = float(mask_tp_num) / (float(mask_tp_num) + float(mask_fp_num)) mask_recall = float(mask_tp_num) / (float(mask_tp_num) + float(mask_fn_num)) mask_accuracy = float(mask_num) / float(total_data_num_mask) mask_f1 = 2. * mask_precision * mask_recall / (mask_precision + mask_recall) print('model: ', ckpt_path) print('total age num: ', total_data_num_age) print('total gen num: ', total_data_num_gen) print('total mask num: ', total_data_num_mask) print('age accuracy: ', age_accuracy) print('gen accuracy: ', gen_accuracy) print('mask accuracy: ', mask_accuracy) print('gen precision: ', gen_precision) print('gen recall: ', gen_recall) print('gen f1: ', gen_f1) print('mask precision: ', mask_precision) print('mask recall: ', mask_recall) print('mask f1: ', mask_f1) model_name = os.path.basename(ckpt_path).split('.')[0] model_dir = os.path.dirname(ckpt_path) result_txt = os.path.join(model_dir, model_name + '.txt') if os.path.exists(result_txt): os.remove(result_txt) with open(result_txt, 'a') as ft: ft.write('model: {}\n'.format(ckpt_path)) ft.write('total age num: {}\n'.format(total_data_num_age)) ft.write('total gen num: {}\n'.format(total_data_num_gen)) ft.write('total mask num: {}\n'.format(total_data_num_mask)) ft.write('age accuracy: {}\n'.format(age_accuracy)) ft.write('gen accuracy: {}\n'.format(gen_accuracy)) ft.write('mask accuracy: {}\n'.format(mask_accuracy)) ft.write('gen precision: {}\n'.format(gen_precision)) ft.write('gen recall: {}\n'.format(gen_recall)) ft.write('gen f1: {}\n'.format(gen_f1)) ft.write('mask precision: {}\n'.format(mask_precision)) ft.write('mask recall: {}\n'.format(mask_recall)) ft.write('mask f1: {}\n'.format(mask_f1)) def parse_args(): """parse_args""" parser = argparse.ArgumentParser(description='face attributes eval') parser.add_argument('--model_path', type=str, default='', help='pretrained model to load') parser.add_argument('--mindrecord_path', type=str, default='', help='dataset path, e.g. /home/data.mindrecord') args_opt = parser.parse_args() return args_opt if __name__ == '__main__': args_1 = parse_args() args_1.dst_h = config.dst_h args_1.dst_w = config.dst_w args_1.attri_num = config.attri_num args_1.classes = config.classes args_1.flat_dim = config.flat_dim args_1.fc_dim = config.fc_dim args_1.workers = config.workers main(args_1)