# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import pytest import numpy as np import time, math import mindspore.nn as nn from mindspore import context, Tensor, ParameterTuple from mindspore.ops import operations as P from mindspore.common.initializer import TruncatedNormal from mindspore.ops import functional as F from mindspore.ops import composite as C from mindspore.common import dtype as mstype from mindspore.nn.wrap.cell_wrapper import WithLossCell from mindspore.nn.optim import Momentum np.random.seed(1) def weight_variable(): """weight initial""" return TruncatedNormal(0.02) def conv(in_channels, out_channels, kernel_size, stride=1, padding=0): """weight initial for conv layer""" weight = weight_variable() return nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding, weight_init=weight, has_bias=False, pad_mode="valid") def fc_with_initialize(input_channels, out_channels): """weight initial for fc layer""" weight = weight_variable() bias = weight_variable() return nn.Dense(input_channels, out_channels, weight, bias) class LeNet(nn.Cell): """ Lenet network Args: num_class (int): Num classes, Default: 10. Returns: Tensor, output tensor Examples: >>> LeNet(num_class=10) """ def __init__(self, num_class=10): super(LeNet, self).__init__() self.num_class = num_class self.batch_size = 32 self.conv1 = conv(1, 6, 5) self.conv2 = conv(6, 16, 5) self.fc1 = fc_with_initialize(16 * 5 * 5, 120) self.fc2 = fc_with_initialize(120, 84) self.fc3 = fc_with_initialize(84, self.num_class) self.relu = nn.ReLU() self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2) self.reshape = P.Reshape() def construct(self, x): x = self.conv1(x) x = self.relu(x) x = self.max_pool2d(x) x = self.conv2(x) x = self.relu(x) x = self.max_pool2d(x) x = self.reshape(x, (self.batch_size, -1)) x = self.fc1(x) x = self.relu(x) x = self.fc2(x) x = self.relu(x) x = self.fc3(x) return x class CrossEntropyLoss(nn.Cell): """ Define loss for network """ def __init__(self): super(CrossEntropyLoss, self).__init__() self.cross_entropy = P.SoftmaxCrossEntropyWithLogits() self.mean = P.ReduceMean() self.one_hot = P.OneHot() self.on_value = Tensor(1.0, mstype.float32) self.off_value = Tensor(0.0, mstype.float32) self.num = Tensor(32.0, mstype.float32) def construct(self, logits, label): label = self.one_hot(label, F.shape(logits)[1], self.on_value, self.off_value) loss = self.cross_entropy(logits, label)[0] loss = P.RealDiv()(P.ReduceSum()(loss, -1), self.num) return loss class GradWrap(nn.Cell): """ GradWrap definition """ def __init__(self, network): super(GradWrap, self).__init__() self.network = network self.weights = ParameterTuple(filter(lambda x: x.requires_grad, network.get_parameters())) def construct(self, x, label): weights = self.weights return C.grad_by_list(self.network, weights)(x, label) @pytest.mark.level0 @pytest.mark.platform_x86_ascend_training @pytest.mark.env_single def test_ascend_pynative_lenet(): context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend") epoch_size = 20 batch_size = 32 inputs = Tensor(np.ones([batch_size, 1, 32, 32]).astype(np.float32)) labels = Tensor(np.ones([batch_size]).astype(np.int32)) net = LeNet() criterion = CrossEntropyLoss() optimizer = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), 0.1, 0.9) net_with_criterion = WithLossCell(net, criterion) train_network = GradWrap(net_with_criterion) train_network.set_train() total_time = 0 for epoch in range(0, epoch_size): start_time = time.time() fw_output = net(inputs) loss_output = criterion(fw_output, labels) grads = train_network(inputs, labels) success = optimizer(grads) end_time = time.time() cost_time = end_time - start_time total_time = total_time + cost_time print("======epoch: ", epoch, " loss: ", loss_output.asnumpy(), " cost time: ", cost_time) assert(total_time < 20.0) assert(loss_output.asnumpy() < 0.01)