# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Export MobilenetV2 on ImageNet""" import argparse import numpy as np import mindspore from mindspore import Tensor from mindspore import context from mindspore.train.serialization import load_checkpoint, load_param_into_net from mindspore.train.quant import quant from src.mobilenetV2 import mobilenetV2 from src.config import config_ascend parser = argparse.ArgumentParser(description='Image classification') parser.add_argument('--checkpoint_path', type=str, default=None, help='Checkpoint file path') parser.add_argument('--device_target', type=str, default=None, help='Run device target') args_opt = parser.parse_args() if __name__ == '__main__': cfg = None if args_opt.device_target == "Ascend": cfg = config_ascend context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=False) else: raise ValueError("Unsupported device target: {}.".format(args_opt.device_target)) # define fusion network network = mobilenetV2(num_classes=cfg.num_classes) # convert fusion network to quantization aware network network = quant.convert_quant_network(network, bn_fold=True, per_channel=[True, False], symmetric=[True, False]) # load checkpoint param_dict = load_checkpoint(args_opt.checkpoint_path) load_param_into_net(network, param_dict) # export network print("============== Starting export ==============") inputs = Tensor(np.ones([1, 3, cfg.image_height, cfg.image_width]), mindspore.float32) quant.export(network, inputs, file_name="mobilenet_quant", file_format='GEIR') print("============== End export ==============")