![MindSpore标志](docs/MindSpore-logo.png "MindSpore logo")
============================================================
[View English](./README.md)
- [MindSpore介绍](#mindspore介绍)
- [自动微分](#自动微分)
- [自动并行](#自动并行)
- [安装](#安装)
- [二进制文件](#二进制文件)
- [来源](#来源)
- [Docker镜像](#docker镜像)
- [快速入门](#快速入门)
- [文档](#文档)
- [社区](#社区)
- [治理](#治理)
- [交流](#交流)
- [贡献](#贡献)
- [版本说明](#版本说明)
- [许可证](#许可证)
## MindSpore介绍
MindSpore是一种适用于端边云场景的新型开源深度学习训练/推理框架。
MindSpore提供了友好的设计和高效的执行,旨在提升数据科学家和算法工程师的开发体验,并为Ascend AI处理器提供原生支持,以及软硬件协同优化。
同时,MindSpore作为全球AI开源社区,致力于进一步开发和丰富AI软硬件应用生态。
欲了解更多详情,请查看我们的[总体架构](https://www.mindspore.cn/doc/note/zh-CN/master/design/mindspore/architecture.html)(9月24日前请访问[总体架构](https://www.mindspore.cn/docs/zh-CN/master/architecture.html))。
### 自动微分
当前主流深度学习框架中有三种自动微分技术:
- **基于静态计算图的转换**:编译时将网络转换为静态数据流图,将链式法则应用于数据流图,实现自动微分。
- **基于动态计算图的转换**:记录算子过载正向执行时网络的运行轨迹,对动态生成的数据流图应用链式法则,实现自动微分。
- **基于源码的转换**:该技术是从功能编程框架演进而来,以即时编译(Just-in-time Compilation,JIT)的形式对中间表达式(程序在编译过程中的表达式)进行自动差分转换,支持复杂的控制流场景、高阶函数和闭包。
TensorFlow早期采用的是静态计算图,PyTorch采用的是动态计算图。静态映射可以利用静态编译技术来优化网络性能,但是构建网络或调试网络非常复杂。动态图的使用非常方便,但很难实现性能的极限优化。
MindSpore找到了另一种方法,即基于源代码转换的自动微分。一方面,它支持自动控制流的自动微分,因此像PyTorch这样的模型构建非常方便。另一方面,MindSpore可以对神经网络进行静态编译优化,以获得更好的性能。
MindSpore自动微分的实现可以理解为程序本身的符号微分。MindSpore IR是一个函数中间表达式,它与基础代数中的复合函数具有直观的对应关系。复合函数的公式由任意可推导的基础函数组成。MindSpore IR中的每个原语操作都可以对应基础代数中的基本功能,从而可以建立更复杂的流控制。
### 自动并行
MindSpore自动并行的目的是构建数据并行、模型并行和混合并行相结合的训练方法。该方法能够自动选择开销最小的模型切分策略,实现自动分布并行训练。
目前MindSpore采用的是算子切分的细粒度并行策略,即图中的每个算子被切分为一个集群,完成并行操作。在此期间的切分策略可能非常复杂,但是作为一名Python开发者,您无需关注底层实现,只要顶层API计算是有效的即可。
## 安装
### 二进制文件
MindSpore提供跨多个后端的构建选项:
| 硬件平台 | 操作系统 | 状态 |
| :------------ | :-------------- | :--- |
| Ascend 910 | Ubuntu-x86 | ✔️ |
| | Ubuntu-aarch64 | ✔️ |
| | EulerOS-x86 | ✔️ |
| | EulerOS-aarch64 | ✔️ |
| | CentOS-x86 | ✔️ |
| | CentOS-aarch64 | ✔️ |
| GPU CUDA 10.1 | Ubuntu-x86 | ✔️ |
| CPU | Ubuntu-x86 | ✔️ |
| | Ubuntu-aarch64 | ✔️ |
| | Windows-x86 | ✔️ |
使用`pip`命令安装,以`CPU`和`Ubuntu-x86`build版本为例:
1. 请从[MindSpore下载页面](https://www.mindspore.cn/versions)下载并安装whl包。
```
pip install https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.0/MindSpore/cpu/ubuntu_x86/mindspore-1.0.0-cp37-cp37m-linux_x86_64.whl
```
2. 执行以下命令,验证安装结果。
```python
import numpy as np
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.ops import operations as P
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
class Mul(nn.Cell):
def __init__(self):
super(Mul, self).__init__()
self.mul = P.Mul()
def construct(self, x, y):
return self.mul(x, y)
x = Tensor(np.array([1.0, 2.0, 3.0]).astype(np.float32))
y = Tensor(np.array([4.0, 5.0, 6.0]).astype(np.float32))
mul = Mul()
print(mul(x, y))
```
```
[ 4. 10. 18.]
```
### 来源
[MindSpore安装](https://www.mindspore.cn/install)。
### Docker镜像
MindSpore的Docker镜像托管在[Docker Hub](https://hub.docker.com/r/mindspore)上。
目前容器化构建选项支持情况如下:
| 硬件平台 | Docker镜像仓库 | 标签 | 说明 |
| :----- | :------------------------ | :----------------------- | :--------------------------------------- |
| CPU | `mindspore/mindspore-cpu` | `x.y.z` | 已经预安装MindSpore `x.y.z` CPU版本的生产环境。 |
| | | `devel` | 提供开发环境从源头构建MindSpore(`CPU`后端)。安装详情请参考https://www.mindspore.cn/install 。 |
| | | `runtime` | 提供运行时环境安装MindSpore二进制包(`CPU`后端)。 |
| GPU | `mindspore/mindspore-gpu` | `x.y.z` | 已经预安装MindSpore `x.y.z` GPU版本的生产环境。 |
| | | `devel` | 提供开发环境从源头构建MindSpore(`GPU CUDA10.1`后端)。安装详情请参考https://www.mindspore.cn/install 。 |
| | | `runtime` | 提供运行时环境安装MindSpore二进制包(`GPU CUDA10.1`后端)。 |
| Ascend |