# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ from mindspore import Tensor from mindspore.ops import operations as P import mindspore.nn as nn from mindspore.common.api import ms_function import numpy as np import mindspore.context as context from mindspore.common.initializer import initializer from mindspore.common.parameter import Parameter from mindspore.ops.composite import GradOperation context.set_context(device_target="Ascend") class Grad(nn.Cell): def __init__(self, network): super(Grad, self).__init__() self.grad = GradOperation(name="get_all", get_all=True, sens_param=True) self.network = network @ms_function def construct(self, input, output_grad): return self.grad(self.network)(input, output_grad) class Net(nn.Cell): def __init__(self): super(Net, self).__init__() out_channel = 512 kernel_size = 2048 self.conv = P.Conv2D(out_channel, (kernel_size, kernel_size), mode=1, pad_mode="same", pad=3, stride=2, dilation=1, group=1) self.w = Parameter(initializer( 'normal', [512, 2048, 1, 1]), name='w') @ms_function def construct(self, x): return self.conv(x, self.w) def test_net(): x = np.ones([32, 2048, 7, 7]).astype(np.float32) sens = np.ones([32, 512, 7, 7]).astype(np.float32) net = Grad(Net()) output = net(Tensor(x), Tensor(sens)) print(output.asnumpy())