# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ from mindspore import Tensor from mindspore.ops import operations as P import mindspore.nn as nn from mindspore.common.api import ms_function import numpy as np import mindspore.context as context from mindspore.common.initializer import initializer from mindspore.common.parameter import Parameter context.set_context(device_target="Ascend") class Net(nn.Cell): def __init__(self): super(Net, self).__init__() self.maxpool = P.MaxPoolWithArgmax(pad_mode="same", window=3, stride=2) self.x = Parameter(initializer( 'normal', [1, 64, 112, 112]), name='w') self.add = P.TensorAdd() @ms_function def construct(self): output = self.maxpool(self.x) return output[0] def test_net(): x = np.random.randn(1,64,112,112).astype(np.float32) maxpool = Net() output = maxpool() print("***********output output*********") print(output.asnumpy())