# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import pytest from mindspore import Tensor from mindspore.ops import operations as P import mindspore.nn as nn import numpy as np import mindspore.context as context context.set_context(mode=context.GRAPH_MODE, device_target='GPU') class StridedSlice(nn.Cell): def __init__(self): super(StridedSlice, self).__init__() self.stridedslice = P.StridedSlice() def construct(self, x): return self.stridedslice(x, (2, 0, 0), (3, 2, 3), (1, 1, 1)) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_slice(): x = Tensor(np.array([[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]], [[5, 5, 5], [6, 7, 8]]]).astype(np.int32)) stridedslice = StridedSlice() output = stridedslice(x) expect = [[[5., 5., 5.], [6., 7., 8.]]] assert (output.asnumpy() == expect).all()