# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ ##############export checkpoint file into mindir model################# python export.py """ import argparse import os import numpy as np from mindspore import Tensor from mindspore import export, load_checkpoint, load_param_into_net from src.config import lstm_cfg as cfg from src.lstm import SentimentNet if __name__ == '__main__': parser = argparse.ArgumentParser(description='MindSpore LSTM Exporter') parser.add_argument('--preprocess_path', type=str, default='./preprocess', help='path where the pre-process data is stored.') parser.add_argument('--ckpt_file', type=str, required=True, help='lstm ckpt file.') args = parser.parse_args() embedding_table = np.loadtxt(os.path.join(args.preprocess_path, "weight.txt")).astype(np.float32) network = SentimentNet(vocab_size=embedding_table.shape[0], embed_size=cfg.embed_size, num_hiddens=cfg.num_hiddens, num_layers=cfg.num_layers, bidirectional=cfg.bidirectional, num_classes=cfg.num_classes, weight=Tensor(embedding_table), batch_size=cfg.batch_size) param_dict = load_checkpoint(args.ckpt_file) load_param_into_net(network, param_dict) input_arr = Tensor(np.random.uniform(0.0, 1e5, size=[64, 500]).astype(np.int32)) export(network, input_arr, file_name="lstm", file_format="MINDIR")