# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Evaluation api.""" import os import argparse import pickle from mindspore.common import dtype as mstype from mindspore import context from config import TransformerConfig from src.transformer import infer, infer_ppl from src.utils import Dictionary from src.utils import get_score parser = argparse.ArgumentParser(description='Evaluation MASS.') parser.add_argument("--config", type=str, required=True, help="Model config json file path.") parser.add_argument("--vocab", type=str, required=True, help="Vocabulary to use.") parser.add_argument("--output", type=str, required=True, help="Result file path.") parser.add_argument("--metric", type=str, default='rouge', help='Set eval method.') parser.add_argument("--platform", type=str, required=True, help="model working platform.") def get_config(config): config = TransformerConfig.from_json_file(config) config.compute_type = mstype.float16 config.dtype = mstype.float32 return config if __name__ == '__main__': args, _ = parser.parse_known_args() vocab = Dictionary.load_from_persisted_dict(args.vocab) _config = get_config(args.config) device_id = os.getenv('DEVICE_ID', None) if device_id is None: device_id = 0 device_id = int(device_id) context.set_context( mode=context.GRAPH_MODE, device_target=args.platform, reserve_class_name_in_scope=False, device_id=device_id) if args.metric == 'rouge': result = infer(_config) else: result = infer_ppl(_config) with open(args.output, "wb") as f: pickle.dump(result, f, 1) # get score by given metric score = get_score(result, vocab, metric=args.metric) print(score)