# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.ops import operations as P from mindspore.ops.operations import _grad_ops as G class NetSigmoid(nn.Cell): def __init__(self): super(NetSigmoid, self).__init__() self.sigmoid = P.Sigmoid() def construct(self, x): return self.sigmoid(x) class NetSigmoidGrad(nn.Cell): def __init__(self): super(NetSigmoidGrad, self).__init__() self.sigmoid_grad = G.SigmoidGrad() def construct(self, y, dy): return self.sigmoid_grad(y, dy) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_sigmoid(): x = Tensor(np.array([[[[-1, 1, 10], [1, -1, 1], [10, 1, -1]]]]).astype(np.float32)) error = np.ones(shape=[1, 1, 3, 3]) * 1.0e-6 context.set_context(mode=context.GRAPH_MODE, enable_graph_kernel=True, device_target="GPU") net = NetSigmoid() result_open_gk = net(x) context.set_context(mode=context.GRAPH_MODE, enable_graph_kernel=False, device_target="GPU") net_beta = NetSigmoid() result_close_gk = net_beta(x) diff = result_open_gk.asnumpy() - result_close_gk.asnumpy() assert np.all(abs(diff) < error) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_sigmoid_grad(): y = Tensor(np.array([[[[-1, 1, 2], [1, -1, 1], [2, 1, -1]]]]).astype(np.float32)) dy = Tensor(np.array([[[[-11, 2, 4], [-1, 1, -1], [-4, 4, -4]]]]).astype(np.float32)) error = np.ones(shape=[1, 1, 3, 3]) * 1.0e-6 context.set_context(mode=context.GRAPH_MODE, enable_graph_kernel=True, device_target="GPU") net = NetSigmoidGrad() result_open_gk = net(y, dy) context.set_context(mode=context.GRAPH_MODE, enable_graph_kernel=False, device_target="GPU") net_beta = NetSigmoidGrad() result_close_gk = net_beta(y, dy) diff = result_open_gk.asnumpy() - result_close_gk.asnumpy() assert np.all(abs(diff) < error)