# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.ops import operations as P class Net(nn.Cell): def __init__(self): super(Net, self).__init__() self.select = P.Select() def construct(self, cond_op, input_x, input_y): return self.select(cond_op, input_x, input_y) context.set_context(mode=context.GRAPH_MODE, device_target="CPU") @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_select_float32(): cond = np.array([[True, False], [True, False]]).astype(np.bool) x = np.array([[1.2, 1], [1, 0]]).astype(np.float32) y = np.array([[1, 2], [3, 4.0]]).astype(np.float32) select = Net() output = select(Tensor(cond), Tensor(x), Tensor(y)) print(output.asnumpy()) expect = [[1.2, 2], [1, 4.0]] error = np.ones(shape=[2, 2]) * 1.0e-6 diff = output.asnumpy() - expect assert np.all(diff < error) assert np.all(-diff < error) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_select_float16(): cond = np.array([[True, False], [True, False]]).astype(np.bool) x = np.array([[1.2, 1], [1, 0]]).astype(np.float16) y = np.array([[1, 2], [3, 4.0]]).astype(np.float16) select = Net() output = select(Tensor(cond), Tensor(x), Tensor(y)) print(output.asnumpy()) expect = [[1.2, 2], [1, 4.0]] error = np.ones(shape=[2, 2]) * 1.0e-3 diff = output.asnumpy() - expect assert np.all(diff < error) assert np.all(-diff < error) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_select_int32(): cond = np.array([[True, False], [True, False]]).astype(np.bool) x = np.array([[12, 1], [1, 0]]).astype(np.int32) y = np.array([[1, 2], [3, 4]]).astype(np.int32) select = Net() output = select(Tensor(cond), Tensor(x), Tensor(y)) print(output.asnumpy()) expect = [[12, 2], [1, 4]] error = np.ones(shape=[2, 2]) * 1.0e-6 diff = output.asnumpy() - expect assert np.all(diff < error) assert np.all(-diff < error)